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Abstract— We address a systematic evaluation of facial asym-
metry from a population of 100 high-quality laser scans, which
are first symmetrized and then manipulated to introduce 25

synthetic patterns with a variety of asymmetries. A quantitative
evaluation is performed by comparing these known asymme-
tries with those estimated by different automatic algorithms.
Estimation of the actual asymmetries present in the original
surface was also addressed. We find that widely used methods
based on least-squares minimization not only fail to produce
accurate estimates but, in some cases, recover asymmetry
patterns that are radically different from the actual asymmetry
of the input surfaces, with low or even negative correlation
coefficients. A number of alternative algorithms are tested,
including landmark-, midline- and surface-based approaches.
Among these, we find that the best performance is obtained
by a hybrid approach combining surface and midline points,
framed within a least median of squares algorithm with weights
that decay exponentially with the distance from the midline
and an additional term to ensure that the recovered pattern of
asymmetry is itself symmetric.

I. INTRODUCTION

Facial symmetry is a recurrent topic in computer vision,

with several and diverse applications including face recog-

nition [10], [19], [29], gender classification [30], landmark

detection [23], [26], assessment of orthodontic surgery [1],

[5] or facial attractiveness [25], to name a few. A particu-

larly interesting application arises from the relation between

craniofacial dysmorphology and neuropsychiatric disorders

of developmental origin. Among the most evident examples

of this relation are the distinctive facial characteristics of

patients with Down syndrome [6], but these have also been

identified in autism [9], [22], schizophrenia [13], bipolar

disorder [11], fetal alcohol syndrome [21], [16], etc. When

looking for dysmorphology patterns, facial asymmetry has

been highlighted as an especially relevant feature [9], [13],

[16]. However, in contrast to the evident dysmorphology

in diseases like Down syndrome, dysmorphology in other

disorders such as schizophrenia, autism or bipolar disorder

can be very subtle to the extent that it cannot be identified

by the human eye.

Thus, there is an interest in highly accurate methods

to analyze facial asymmetry. All spatial components of

the face (right-left, cranio-caudal, anterior-posterior) can be

asymmetric [25], hence the analysis needs to be performed in

3D with the help of automatic algorithms. The latter arises as

a consequence of the complex asymmetry patterns resulting

from a full-3D analysis of the facial surface, but also due to

the fact that human perception of asymmetry is orientation-

dependant, with a bias toward the vertical direction [27].

Furthermore, one of the added benefits of 3D analysis is

that surface information is expressed directly in physical

units (e.g. mm), which allows for extracting quantitatively

meaningful information. Thus, there exist several methods

[1], [2], [4], [5], [9], [17], [20], [28] that provide an estimate

of the magnitude of facial asymmetry for each surface

point, calculated as the deviation with respect to a perfectly

symmetric one, directly expressed in mm. On the other

hand, validation of the estimated asymmetry has been largely

overlooked and the few attempts in this direction have either

focused on qualitative assessment [20] or reported results on

single cases [4], [17], which limits their significance.

In this paper we address a systematic evaluation of facial

asymmetry from a population of 100 high-quality laser

scans, which are first symmetrized and then manipulated to

introduce 25 synthetic patterns with a variety of asymmetries.

A quantitative evaluation is performed by comparing these

known asymmetries with those estimated by different auto-

matic algorithms. We find that widely used methods based

on least-squares minimization not only fail to produce ac-

curate estimates but, in some cases, they recover asymmetry

patterns that correlate poorly with the actual asymmetries

present in the facial surfaces. We also present alternative

cost functions and show that these can perform considerably

better in terms of estimation accuracy.

The next section provides some basic concepts and nota-

tion, together with a review of the most related literature. The

different alternatives explored for automatic asymmetry esti-

mation are described in Section III, followed by experiments

with synthetic and real asymmetries in Sections IV and V,

respectively. Concluding remarks are provided in Section VI.

II. PROBLEM STATEMENT AND RELATED WORK

Estimation of facial symmetry and, more generally, shape

symmetry has been extensively studied and an in-depth

review of the field is beyond the scope of this work. We

will focus on 3D methods that allow obtaining point-wise

estimates of facial asymmetry directly in physical units, as

these methods make possible to quantitatively assess the

accuracy of the provided estimates.

Given a facial surface S, the most popular approach to

analyze its symmetry is to divide it into left and right

hemispheres, so that asymmetry is computed by comparing

paired points from both sides [5], [8], [9], [16], [17], [20],

[28], [29]. This is typically done as follows:

1. Given a facial surface S , its mirrored version SM is

obtained by reflection into some arbitrary plane [15];



Fig. 1. Example of a facial surface and a mirrored version of it, obtained
by inverting the sign of its x-coordinates. Eight left/right landmarks are also
displayed, with red and blue colors indicating the side to which they belong
to highlight that, after reflection, left and right sides are swapped.

conceptually, this would ideally be the mid-sagittal

plane, but in practice that is not strictly required. In

this paper we use the plane x = 0.

2. Both surfaces S and SM are put into correspondence.

Without loss of generality this can be indicated by a

transformation T and a reflection of vertex indices,

(·)ref , applied to SM so that T (Sref
M ) is as close as

possible to S under the appropriate metric.

3. Asymmetry is computed by (point-wise) comparison

between S and T (Sref
M ).

Reflection of vertex indices is necessary to bring SM

back into point-wise correspondence with S: e.g. let xj =
(xj , yj , zj)T be the right outer-eye corner of S; after re-

flection it becomes x
j
M = (−xj , yj , zj)T which shall now

correspond to the left outer-eye corner of SM , as illustrated

in Fig. 1. The operator (·)ref is a function f : N → N that

swaps left and right vertex indices to deal with this issue.

We will use j to denote the complement (paired symmetric

index) of the j-th index, i.e.

(j)ref = j, (j)ref = j

Some simplification to the above procedure is possible

by ensuring that the reflection plane of step 1 coincides

with the axis of bilateral symmetry or mid-sagittal plane

pS [3]. In such case, the registration in step 2 to put S
and SM in correspondence is not necessary. For example,

in [1], [7], [14] asymmetry is quantified from the difference

of landmark distances to the mid-sagittal plane. However,

the correct estimation of pS is actually analogous to solving

the registration in step 2 and pair-wise comparison between

S and T (Sref
M ) is a generalization of earlier works based

on simplified calculations that can be equivalently obtained

from step 3.

Therefore, estimation of pS or, more generally, alignment

of S and SM becomes a crucial aspect for facial sym-

metry analysis. An overwhelming majority of studies have

addressed this from least-squares cost functions (LMS), typ-

ically applying Procrustes methods for shape alignment (in

this case constrained to rigid transformations). While least-

squared alignment has solid theoretical foundations within

shape theory, it does not necessarily produce the correct

alignment for identification of asymmetry. To illustrate this,

consider the following example:

• Let Ssymm be a facial surface that is perfectly sym-

metric about the plane x = 0. Thus, symmetric paired

points (e.g. eye-, nose-, mouth-corners) have the same

y and z coordinates and x coordinates with the same

magnitude but inverted sign.

• Let us generate S1 by expanding the left side of Ssymm

linearly with respect to the coordinates of the x-axis.

If we represent surface Ssymm by a set of nV vertices

{vi
s}nV

i=1
with vi

s = (xi
s, y

i
s, z

i
s)

T then:

∀(vi
s ∈ Ssymm,vi

1
∈ S1) :

vi
1
=

{

vi
s + (αxi

s, 0, 0)
T if xi

s > 0

vi
s otherwise

where α is a constant that controls the degree of

expansion.

Surface S1 is asymmetric, with asymmetry pattern A1.

Note that A1 is not simply the displacement that we have

introduced, as that would imply that points on the left side

are asymmetric while points on the right side are not, since

vi
1
−vi

s = 0 for any vi
1

on the right side of the face. In other

words, the asymmetry pattern must be symmetric for paired

points. In essence A1 is the deviation of S1 from its closest

possible symmetric surface S1s. Thus, we first symmetrize

S1, as follows1:

S1s =
S1 +Mx

ref (S1)

2
(1)

where the operator Mx
ref (·) denotes mirror reflection of

both coordinates (which is done by means of a sign inversion

of the x-coordinates) and vertex indices. Thus:

∀(vi
1
∈ S1,v

i
1s ∈ S1s) : v

i
1s =

vi
1
+Mx

ref (vi
1
)

2

Given vi
s = (xi

s, y
i
s, z

i
s)

T , xi
s > 0 ⇔ xi

s < 0, therefore:

vi
1s =

{

1

2
(xi

s + αxi
s, y

i
s, z

i
s)

T + 1

2
(−xi

s, y
i
s, z

i
s)

T if xi
s > 0

1

2
(xi

s, y
i
s, z

i
s)

T + 1

2
(−xi

s − αxi
s, y

i
s, z

i
s)

T otherwise

But Ssymm is symmetric with respect to x = 0, with xi
s =

−xi
s, yis = yis and zis = zis, hence:

vi
1s =

(

xi
s +

α

2
xi
s, y

i
s, z

i
s

)T ∀i

Now, our asymmetry pattern can be calculated as the devia-

tion of S1 from its symmetrization S1s, that is:

A1 = S1 −
S1 +Mx

ref (S1)

2
=

S1 −Mx
ref (S1)

2

which matches the usual definition of asymmetry, as the

difference between a face and a mirrored version of itself,

except for the 1

2
scaling factor, which is uniform for all

points on the surface and does not alter the spatial pattern

1This is possible because we know by construction that the symmetry
plane of S1 is at x = 0.



Fig. 2. Example of asymmetric surface S1 generated by linear expansion of the x-axis on the left facial side. Pattern magnitudes are color-coded on
the surfaces according to the respective scales indicated by the color bars, expressed in mm. Left: expansion applied to the left side; Middle: the resulting
pattern of asymmetry; Right: the pattern of asymmetry estimated by the LMS approach. Correlation between the actual (middle) and recovered (right)
patterns is −0.158 and their average difference over the whole surface is 4.02 mm.

of asymmetry. We can also see that the resulting asymmetry

pattern is itself symmetric, as required.

Because we have constructed S1 by synthetically deform-

ing Ssymm, we know its symmetry plane (at x = 0) and its

asymmetry pattern (i.e. A1 is our ground truth). Now, let us

try to estimate the asymmetry of S1 automatically, under the

simplified assumption of having a dense correspondences be-

tween left and right paired points2. Our estimated asymmetry

pattern will be:

Â1 =
S1 − T (Mx

ref (S1))

2

where T (·) is the rigid transformation that aligns S1 and its

reflection Mx
ref (S1), which in this case should be simply

the identity. It is easy to see that the LMS approach will not

produce the correct solution, as it estimates T as follows:

argmin
T̂

∑

∀vS

‖vS − T̂ (vref
M )‖2, vS ∈ S, vref

M ∈ Sref
M

for a generic surface S and its mirrored-reflection Sref
M .

Fig. 2 illustrates the difference between the resulting LMS

estimate Â1 and the actual asymmetry A1. Some robust

alternatives have been explored to alleviate this shortcoming

[2] but we will show in Section IV that they are often

insufficient.

Finally, it should be noted that we adopt a template-based

representation where left-right correspondences are known,

thus allowing to constrain the analysis to rigid transforma-

tions. While some methods address superimposition of S and

Sref
M within non-rigid alignment frameworks [2], [4], [9],

this is necessary only when paired correspondences are not

available (i.e. the registration algorithm needs both determine

the transformation and the correspondences between S and

Sref
M ). Under ideal conditions, the non-rigid registration

would produce the same correspondences as those provided

by the template and the deformation it recovers could be

decomposed into rigid and non-rigid parts: the first one is

2In our case this is known by construction; in general it must be estimated,
e.g. by template matching or iterative closest point registration.

equivalent to T̂ and the second one to the difference that

remains after rigid alignment, S − T̂ (Sref
M ).

III. ASYMMETRY ESTIMATION

As discussed in the previous section, a key element for the

estimation of facial asymmetry is alignment of its surface

with a mirrored-reflected version of itself. Different choices

of the objective functions can lead to quite different results.

Because asymmetry will be estimated as the difference after

alignment (on a point-wise basis), we need to determine a

suitable strategy for it. With this goal, we address a quan-

titative comparison to determine the accuracy of asymmetry

estimation for different types of alignment.

There are two main elements that need to be chosen to

determine the objective function that is used: 1) the type of

input data, 2) the error metric. Input data can be a) a sparse

set of anatomically corresponding points (landmarks), b) a

dense set of surface points (which are also semi-landmarks

in our case, since they are in correspondence), c) a specific

subset of corresponding points, such as all surface-points

corresponding to the facial midline. There are many options

for error metrics, among which averages or medians of

squares are the most common.

Apart from the LMS approach already described, below

we provide a list of the alignment options that will be

evaluated. Unless explicitly indicated otherwise, we provide

the formulation for the case of using surface points that

are in correspondence (hence behaving as quasi-landmarks).

Adaptations for the case of using landmarks or midline points

are rather trivial and therefore not indicated.

1) Least mean of squares (LMS): This is the most com-

mon choice used in shape analysis. We can re-write its cost

function from Section II in terms of corresponding indices

in the original and mirrored-reflected surfaces, respectively

i and i, as follows:

argmin
T̂

∑

∀i

‖vi
S − T̂ (vi

M )‖2 (2)

This minimization can be solved in closed-form but is very

sensitive to outliers. Two popular ways to tackle this well



known weakness are i) to explicitly detect (and discard)

outliers or ii) replace the mean with the median, implicitly

tolerant to outliers.

2) Confidence-weighted LMS (CW-LMS): Following the

work by Van Leemput et al. [18], the alignment between

original and mirrored faces is computed by Claes et al [2]

using a weighted objective function:

argmin
T̂

∑

∀i

wi‖vi
S − T̂ (vi

M )‖2 (3)

The objective is to assign higher weights to points that

correctly follow the expected distribution of the error and

lower weights to points that behave atypically (outliers).

Thus, the weights wi are calculated as the probability of the

i-th point to be an inlier divided by the total probability (i.e.

including that of being an outlier). A Gaussian distribution

of the alignment error N (e, 0, σ) is assumed for inliers and a

uniform distribution 1/λ for outliers. Starting from an initial

estimate of T̂ using equal (positive) weights for all points,

σ and λ are estimated from the resulting errors:

ei = ‖vi
S − T̂ (vi

M )‖ (4)

σ =

√

∑

∀i wiei
∑

∀i ei
(5)

λ =
1√
2πσ

exp
(

− 1

2
K2

)

(6)

where K is a constant that controls the significance level,

which we set to K = 2 following [2]. Then we can compute

weights wi for each point and re-estimate T̂ from eq. (3):

wi =
N (ei, 0, σ)

N (ei, 0, σ) + λ
(7)

Equations (3) to (7) are iterated until convergence of T̂ .

3) Least median of squares (LMedS): It consists of a

slight modification of the objective function in eq. (2), as

follows:

argmin
T̂

(

median
{

‖vi
S − T̂ (vi

M )‖2
}nV

i=1

)

, (8)

where nV is the number of vertices of surface S . This

apparently minor change has a considerable impact [24].

Firstly, the objective function is now strongly tolerant to

outliers. Secondly, the minimization cannot be solved in

closed-form as before, but needs to be estimated numerically.

4) Distance-weighted LMedS (DW-LMedS): We can also

introduce weights in the LMedS scheme. However, since

LMedS is intrinsically tolerant to outliers, confidence

weights do not make much sense. Instead, we introduce the

following modifications: 1) weights that decrease with the

distance from the facial midline, based on the observation

that facial asymmetry tends to grow as we depart from

the midline; 2) symmetry enforcement of the recovered

asymmetry patterns.

Intuitively, given a global transformation relating S and

S
ref
M , the difference between corresponding points would be

amplified proportionally to the distance to the midline. The

inverse of the distance, however, is unbounded. Thus, we use

the negative exponential to obtain weights with a controlled

behavior that resembles to the inverse distance, leading to

the cost function below:

argmin
T̂

(

median
{

‖ eiDW ‖2
}nV

i=1
+

nV
∑

i=1

|e2i − e2
i
|

nV

)

(9)

eiDW = exp

(−1

τ

dML(v
i
S)

max
(

dML(vS)
)

)

(

vi
S − T̂ (vi

M )
)

ei = ‖vi
S − T̂ (vi

M )‖, ei = ‖vi
S − T̂ (vi

M )‖

where dML(v
i
S) is the distance of the i-th vertex to the facial

mid-line and the argument of the exponential is normalized

with respect to the maximum value of dML in the surface.

The constant τ controls the rate of decay of the exponential,

which nearly vanishes when dML reaches

3

2
τ max

(

dML(vS)
)

using the standard criterion of 95% decay of the exponential

(the division by 2 is because the weights are squared in the

cost function). Since the maximum distance is an estimate

of half the face width, we can conclude that this weighting

scheme considers points within (3/4)τ times the facial

width.

As noted by Klingenberg et al. [15], a drawback of using

robust methods to estimate the alignment T (·) is that we

may end up with asymmetry patterns that are not symmetric

themselves. Thus, the second term in the cost function of eq.

(9) penalizes the mean difference of squared errors between

points that must have a symmetric pattern. Since both terms

in eq. (9) are of comparable magnitude there is no need for an

additional constant to weight their contribution. The median

in the first term provides robustness to outliers, which is not

desired in the second term because the asymmetry pattern

should be strictly symmetric.

5) Hemispheres + midline (HM-LMedS and HM-DW-

LMedS): As we shall see in the results, alignments based

on the facial midline provide an interesting complementarity

to those based on all surface points. Indeed, the distance-

based weights of DW-LMedS give more relevance to errors

near the midline, which results in more accurate estimates of

the asymmetry patterns. However, there is a huge imbalance

between the number of points in the midline and in the rest

of the surface. A simple way to make sure we capture the

effects of both the midline and both facial hemispheres is

to consider their contribution in separate terms of the cost

function. Hence, we update eq. (9) into:

argmin
T̂

(

median
{

‖ eiDW ‖2
}

∀i/∈IML
+

+
1

2
median

{

e2i
}

∀i∈IML
+

nV
∑

i=1

|e2i − e2
i
|

nV

)

(10)

where the first term corresponds to the hemispheres and the

second term to the midline, defined as the points with no



paired correspondence (or, analogously, those that are the

paired points of themselves):

IML =
{

i ∈ [1;nV ] | i = i
}

Eq. (10) corresponds to HM-DW-LMedS as it allows to

introduce distance-based weights, similarly to eq. (9). We

can also fix all weights to 1, so that eq. (10) is simply

a symmetry-enforced LMedS that considers separately the

hemispheres and the midline. We denote the latter as HM-

LMedS.

IV. EVALUATION OF ASYMMETRY ESTIMATES

A. Ground truth generation

In order to evaluate how the different alignment options

discussed in Section III perform, we need to know the

asymmetry patterns contained in our test surfaces. For a

perfectly symmetric surface, we can proceed as described in

the example from Section II and impose synthetic patterns

of asymmetry which will serve as our ground truth.

Obtention of facial surfaces with perfect bilateral sym-

metry about x = 0 can be done in a rather straight-forward

manner. Starting from a non-symmetric surface S1 we simply

apply eq. (1) to obtain S1s. All we need for this is a

rough estimate of correspondences of the paired points (to

do the index-reflection), which can be obtained by template

matching or registration. An advantage of proceeding this

way is that, although we will introduce a synthetic pattern

of asymmetry, we start from the symmetrization of real

faces, which allows including the actual variability of facial

geometry in our experiments.

We generated 25 synthetic asymmetry patterns, which

included linear expansion of x, y and z axes (as in Sec-

tion II), module expansions (with respect to specific facial

landmarks taken as the origin, e.g. nose tip, eye- and mouth-

corners), vertical (y axis) displacements of one or both facial

sides, horizontal (x axis) displacements of specific regions

of the face (eyes, nose, mouth), quadratic distortion and

combinations of two of these effects at once (see details in

Supplementary Materials). Some examples are provided in

Fig. 3.

Note that while application of eq. (1) results in a sym-

metric surface S1s, the latter is not necessarily the closest

possible symmetric surface to S1. This happens only when

the symmetry axis of S1 coincides with the plane chosen to

do the mirroring (in our case, x = 0). Thus, in general S1s

could not be used to compute the asymmetry pattern of the

original surface S1, but it still suffices for the purpose of

starting from a perfectly symmetric face.

The above highlights an important issue: when generating

synthetic patterns of asymmetry, we must avoid introducing

any translation of rotation bias, since that would imply

changes in the transformation T (·) relating the original

and mirror-reflected surfaces (which we assume to be the

identity), hence invalidating our asymmetry ground truth.

B. Experimental evaluation

We performed tests on a dataset of 100 symmetrized sur-

faces, each of them deformed with the 25 synthetic patterns

of asymmetry described above. To this end, we started from

100 facial scans acquired by means of a hand-held laser

scanner (Polhemus FastSCANTM , Colchester, VT, USA),

corresponding exclusively to healthy volunteers who acted

as controls in the context of craniofacial dysmorphology

research [12]. Each surface was mapped into a symmetric

template with left-right paired correspondences. The result-

ing template-based representation of each surface was then

averaged with its mirrored-reflected version to obtain the

symmetrized surface, as in eq. (1).

We evaluated the resulting 25×100 faces having synthetic

asymmetry, with the objective of quantitatively assessing

the asymmetry estimation accuracy of the different align-

ment options listed in Section III. Let S be a test surface

with synthesized asymmetry A and Sref
M its mirrored and

reflected version. Asymmetry is estimated by (point-wise)

comparison between S and T (Sref
M ). That is, we obtain

a function Â that assigns a vector in R
3 (the estimated

asymmetry) to each vertex of S . We can measure how

accurate is this estimation by comparing Â to the actual

asymmetry A (i.e. the ground truth). While the error per

vertex can be displayed color-coded on the surface for a

qualitative assessment, more compressed representations are

needed for a quantitative comparison. Thus, we used the

correlation coefficient ρ between Â and A, which gives a

normalized coefficient of agreement between the estimated

and actual patterns of asymmetry. An advantage of using

correlation is its independence with respect to the magnitude

of asymmetry, as opposed to measures such as the average

error over the surface used in [4].

Table I provides the average correlation coefficients ob-

tained for each asymmetry pattern by the different alignment

options, subdivided into landmark-, midline- and surface-

based approaches. When using landmarks for alignment,

we relied on a subset of 22 points distributed at corners,

midpoints or salient features of the eyes, nose, mouth and

chin, as detailed in [26]. Facial surfaces were represented as

triangulated meshes with 16363 vertices each: 8124 for each

face-side or hemisphere and 115 for the midline.

DW-HM-LMedS produced the best results, especially if

looking at its worse-performing pattern, which showed a

reasonably high correlation coefficient. In this sense, apart

from DW-HML-LMedS, only landmark-based LMedS and

HML-LMedS showed positive correlation coefficients for

all tested patterns. This means that, except for these three

options, all other alignments tested may lead to the extraction

of asymmetry patterns that are radically different from the

actual patterns of asymmetry of the input surfaces, with low

or even negative correlation coefficients.

Results reported for DW-HM-LMedS in Table I corre-

spond to τ = 3/4, but the influence of this parameter was

also explored for 2 ≥ τ ≥ 2/3 (i.e. so that weights vanish

for distances from 0.5 to 1.5 times the estimated face width).



Fig. 3. Examples of a facial surface with 5 asymmetry patterns synthetically generated (corresponding to patterns number 2, 5, 11, 15 and 24 in Table
I). The magnitude of asymmetry is color coded on the surface from blue (lowest) to red (highest).

TABLE I

AVERAGE CORRELATION COEFFICIENTS FOR EACH OF THE ASYMMETRY PATTERNS TESTED (FULLY DETAILED IN SUPPLEMENTARY MATERIALS)

UNDER DIFFERENT ALIGNMENT OPTIONS TO EXTRACT ASYMMETRY. IN EACH CELL, COLORS WERE USED TO HIGHLIGHT NEARLY PERFECT

CORRELATION IF ρ > 0.9 (BLUE), WEAK CORRELATION IF ρ < 0.5 (ORANGE) OR INVERTED CORRELATION IF ρ < 0 (RED).

Landmarks Midline Whole surface Mixed

A
sy

m
m

P
at

te
rn

s

L
M

S

L
M

ed
S

D
W

-L
M

ed
S

L
M

S

L
M

ed
S

L
M

S

C
W

-L
M

S

L
M

ed
S

D
W

-L
M

ed
S

H
M

-L
M

ed
S

H
M

-D
W

-L
M

ed
S

Linear expansions of individual

axes (with the nose tip at the

origin)

1 0.92 0.95 0.94 1.00 1.00 −0.15 −0.17 −0.93 −0.92 0.82 0.87

2 0.87 1.00 1.00 1.00 1.00 0.90 0.90 0.97 0.98 0.98 0.99

3 0.73 0.99 1.00 1.00 1.00 0.70 0.77 0.95 0.95 0.96 0.96

Module expansions with respect

to a given landmark

4 0.95 1.00 1.00 1.00 1.00 0.67 0.70 0.93 0.94 0.95 0.97

5 0.95 0.99 1.00 1.00 1.00 0.48 0.50 0.87 0.86 0.93 0.94

6 0.75 0.96 0.95 0.99 0.99 0.64 0.67 0.85 0.88 0.90 0.93

7 0.93 0.98 0.98 0.99 0.99 0.62 0.64 0.84 0.88 0.92 0.94

Combinations of vertical shift (y

axis) and expansion of x or z

axis

8 0.54 0.99 1.00 1.00 1.00 0.61 0.65 0.94 0.95 0.95 0.96

9 0.94 0.99 0.99 1.00 1.00 0.46 0.47 0.86 0.43 0.92 0.94

10 0.89 0.94 0.95 1.00 1.00 0.51 0.51 −0.05 −0.05 0.88 0.90

Linear or rotational horizontal

shifts of the upper or lower face

11 0.65 0.97 0.97 −0.13 1.00 0.84 0.92 1.00 1.00 1.00 1.00

12 0.95 1.00 1.00 −0.33 1.00 0.65 0.71 1.00 1.00 1.00 1.00

13 0.84 1.00 1.00 −0.01 1.00 0.92 0.97 1.00 1.00 1.00 1.00

14 0.67 1.00 1.00 −0.14 1.00 0.60 0.64 1.00 1.00 1.00 1.00

Progressive horizontal shifts of

specific regions (e.g. mouth, nose,

eyes)

15 0.76 1.00 1.00 −0.18 1.00 0.88 0.94 1.00 1.00 1.00 1.00

16 0.61 1.00 1.00 −0.04 1.00 0.92 0.97 1.00 1.00 1.00 1.00

17 0.83 1.00 1.00 −0.47 1.00 0.76 0.84 1.00 1.00 1.00 1.00

Quadratic distortions limited both

vertically and horizontally from

specific landmarks

18 0.12 0.98 0.97 −0.25 1.00 0.82 0.90 1.00 1.00 1.00 1.00

19 0.37 1.00 1.00 0.07 1.00 0.91 0.97 1.00 1.00 1.00 1.00

20 −0.53 0.27 0.09 −0.44 −0.42 0.97 1.00 1.00 1.00 0.98 0.97

21 0.87 0.85 0.96 0.83 0.60 0.53 0.56 0.78 0.65 0.93 0.94

22 0.72 1.00 1.00 −0.51 −0.33 0.84 0.91 1.00 1.00 0.94 0.94

Combinations of quadratic

distortion and axes expansion

23 0.70 0.62 0.75 0.27 0.28 0.92 0.92 0.97 0.97 0.99 0.99

24 0.95 0.85 0.86 0.96 0.95 −0.07 −0.18 −0.77 −0.76 0.67 0.84

25 −0.08 0.78 −0.38 0.92 0.92 0.27 0.29 0.89 0.88 0.90 0.91

In this range, correlation coefficients showed only small

variations, bounded within 10% of the values indicated in

Table I.

V. TESTS WITH REAL ASYMMETRIES

In previous sections we showed that different choices for

aligning a shape with its mirrored version may result in

significantly different asymmetry patterns, even though we

are analyzing the same facial surface and, therefore, there

should be a unique pattern of asymmetry. As our tests were

carried out on surfaces with synthesized asymmetry, we were

able to evaluate the success of the different options. In this

section we address the following question: will we also

recover significantly different patterns of asymmetry in real

facial scans? To this end, we used the same population of 100
scans as in the previous section, but without modifications

to the acquired surfaces, so that they retain their original

asymmetry.

It is evident that in this situation we do not know the

actual asymmetry, hence some qualitative assessment might

be helpful. With this in mind we start by providing an ex-

ample where different alignment methods produce radically

different results, as shown in the first row of Fig. 4: from

the three alignment options tested, the first one on the left

recovers a pattern of asymmetry that is rather scattered over

the whole face, the middle-one finds a dominant asymmetry

at the outer part of the cheeks and the last one (on the

right) suggests that most of the asymmetry is concentrated

on the lower face. Because symmetry perception is known

to be orientation dependant [27], we have also re-aligned

the recovered symmetry plane with the vertical direction

of the image, so that the displayed snapshots enforce the



Fig. 4. Three different patterns of asymmetry recovered from the same input face: Landmark-based LMS (left), midline-based LMS (middle) and DW-
HM-LMedS (right). The top-row shows the test surface with the recovered asymmetry color-coded on the surface. The bottom-row shows the recovered
asymmetry magnified by a factor of 2.

(perceived) validity of each of the recovered patterns (i.e. if

the shapes were rotated differently, we may perceive that a

different pattern should have been recovered).

Note that each of the patterns recovered in Fig. 4 could

have been used as a synthetic pattern; it would then become

the ground truth against which we test, evidently favoring

one of the alignment methods in particular. Therefore, none

of the 3 patterns can be regarded as incorrect at this point:

each of them could be correct with respect to a different

symmetric surface, namely, the symmetric surface to which

we have to apply the recovered asymmetry pattern to obtain

the test shape in Fig. 4.

As mentioned in Section IV-A, such ambiguities can be

explained due to a translation or rotation bias. This can be

clearly seen in the lower part of Fig. 4: the second row of

the figure shows a magnification of the recovered patterns

of asymmetry by a factor of 2. With this magnification, we

clearly see that the pattern in the central column, recovered

by LMS alignment of the facial midline, contains a rotation

bias, i.e. the head seems to be rotated to its right-hand side

(viewers left) making the snapshot depart from a frontal shot

toward a half-profile view.

From the discussion above we are able to discard the

middle pattern as incorrect due to rotation bias. Unfortu-

nately, deciding whether the left-most or right-most pattern

in Fig. 4 is the correct one is not trivial, at least from visual

inspection. On the other hand, our experiments with synthetic

patterns, on which we were especially careful of avoiding

bias, indicate that DW-HM-LMedS is typically more accurate

than LMS, suggesting that the pattern on the right is the best

asymmetry estimate.

We conclude this section with some quantitative results.

Although we cannot compare the obtained patterns to ground

truth, we can measure how similar are the recovered patterns:

this was done by computing the correlation coefficients be-

tween each pair of patterns recovered by different alignment

methods. Averages over 100 facial scans showed correlations

between 0.3 and 1.0; for approximately half of the scans

there were at least two of the recovered patterns showing a

negative correlation.

VI. CONCLUSIONS

This paper presents a quantitative evaluation of different

methods to estimate the bilateral asymmetry of 3D facial

scans. To this end, a variety of synthetic asymmetry patterns

are used to deform symmetrized surfaces obtained from 100
facial scans. We find that different estimation methods can

produce large variations in the recovered patterns and that the

widespread use of least-squares approaches might produce

patterns that correlate poorly with the actual asymmetries

present in the facial surfaces. A number of solutions were

tested, including both existing and novel alternatives. Among

the latter, an LMedS approach with exponential decay from

the midline and symmetry enforcement (HM-DW-LMedS)

was shown to produce estimates highly correlated with the

actual asymmetry for all tested patterns.

Another interesting result is that landmark- or surface-

based estimates (within the same algorithmic choice) can

produce significantly different results. In contrast to current

trends that favor surface-based methods, these produced

slightly worse results than landmark-based methods. The

reason seems related to the excessive weight of peripheral

facial regions such as the cheeks, due to their comparatively

larger area, as well as the fact that asymmetry tends to

increase as we depart from the midline. On the other hand,

landmarks are typically placed rather centrally on the facial

surface, attached to its major features (e.g. eyes, nose,



mouth), but the exact choice of what points are considered

is often arbitrary, which can impact on the stability of the

estimated asymmetry.

The above provides some intuition about our design of

HM-DW-LMedS. The exponential decay on moving away

from the midline provides an interesting trade-off, assigning

more weight near the facial features typically covered by

landmarks but still including the whole surface in the cost

function. The exponential decay can also be beneficial with

respect to the exact area that is considered to be within

the facial region: in general, its boundaries are difficult to

determine and prone to higher errors than the central features

of the face; hence, assigning them lower weights can improve

the robustness of the algorithms.

Finally, we also performed experiments to estimate the

asymmetry of the original facial scans. While in this case

we cannot measure the estimation error (as the ground truth

is unknown), we did confirm important differences in the

asymmetry patterns that were extracted by the different

methods.
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