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Abstract— An essential issue when training and validating
computer vision systems for affect analysis is how to obtain
reliable ground-truth labels from a pool of subjective annota-
tions. In this paper, we address this problem when labels are
given in an ordinal scale and annotated items are structured
as temporal sequences. This problem is of special importance
in affective computing, where collected data is typically formed
by videos of human interactions annotated according to the
Valence and Arousal (V-A) dimensions. Moreover, recent works
have shown that inter-observer agreement of V-A annotations
can be considerably improved if these are given in a discrete
ordinal scale. In this context, we propose a novel framework
which explicitly introduces ordinal constraints to model the
subjective perception of annotators. We also incorporate dy-
namic information to take into account temporal correlations
between ground-truth labels. In our experiments over synthetic
and real data with V-A annotations, we show that the proposed
method outperforms alternative approaches which do not take
into account either the ordinal structure of labels or their
temporal correlation.

I. INTRODUCTION

The analysis of human non-verbal behavior is a topic
of increasing importance in computer vision. Concretely,
facial expressions and body gestures are accepted to carry
important information about human emotions [1] and, thus,
its automatic understanding has a wide range of potential
applications in the affective computing field. In this context,
a lot of research has focused on building computer vision
systems able to map non-verbal behavior to a representation
of human affect [2]. One of the most popular representations
for this purpose is the Valence-Arousal (V-A) space [3].

Formalized by Russell through the Circumplex model of
affect, Valence and Arousal have been identified as the
underlying dimensions of human emotion. Valence refers
to how pleasant or unpleasant is an affective state while
Arousal indicates the activation or deactivation level. These
two dimensions have been consistently identified in experi-
ments across various modalities [4]-[6], which supports their
validity. On the downside, Valence and Arousal are abstract
dimensions whose exact meaning, apart from subjective, is
not common knowledge (e.g. as opposed to well known
emotions such as happiness, fear, etc).

A. Motivation

An essential issue when training and validating computer
vision systems based on the V-A representation, is how
to obtain ground-truth annotations from collected data (e.g,
videos of human interactions). This is typically addressed
based on manual annotations from expert human observers.
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Fig. 1. Illustration of the ordinal subjective assumption to fuse Valence
and Arousal annotations. While the objective distance between consecutive
ordinal labels is hypothetically uniform, each observer has his/her own
perception of both the position and extent of them. As stated in [7], there
is no justification for the assumption that subjective annotations follow a
linear scale (e.g. the perceived distance between pleasant and neutral not
necessarily matches the one between neutral and unpleasant). Thus, the only
assumption we make in the proposed model is that the order of perceived
labels is maintained across annotators, not their distances.

However, labels obtained in this way are evidently subjective
and have been shown to suffer from large inter-observer
variations [8]-[11].

Subjectivity is unavoidable as it is inherent to affect
annotations, regardless of using V-A or any other repre-
sentation. However, it has been shown that the consistency
of subjective annotations can be considerably improved if
these are performed based on discrete (instead of continuous)
labels and maintaining their ordinal relations [11], [12].
The reasons behind this finding seem related to the invalid
assumptions underlying the use of both continuous and non-
ordinal (nominal) labels. For instance, nominal labels assume
the same degree of confusion between neighbouring and
far away labels, while continuous methods assume a linear
relation between the true labels and the subjective perception
of annotators [13].

Even if following the above recommendations, it is not
possible to rely on individual annotations to obtain reliable
ground truth. Therefore, consensus from pools of observers
are usually preferred. Nevertheless, such consensus is not
straightforward to obtain and the problem of fusing anno-
tations from multiple observers has attracted considerable
attention [14]-[26]. However, a vast majority of algorithms
treat annotated labels simply as nominal classes, e.g. without
taking into account their ordinal relations. As explained
above, this has been found suboptimal for affective annota-



tions, both theoretically [7], [13] and empirically [11], [27].

B. Contributions

In this paper, we present a novel probabilistic framework
to address the fusion of V-A annotations from multiple
human observers. The main contributions of this work are
summarised as follows:

« The proposed method explicitly considers the ordinal
structure in V-A labels and models the gap between
the labeling scale and the subjective perception of each
annotator. Fig. I illustrates this concept. While the
fusion of ordinal labels has been investigated in other
domains [22], to the best of our knowledge, this is the
first time it is applied to V-A annotations.

o In contrast to previous methods in annotation fusion,
the presented framework is able to exploit dynamic
information present in temporal sequences of annota-
tions. Despite this information is irrelevant in other
applications, it is of special importance in the context
of V-A label fusion, where data typically consist of
annotated videos of human interactions.

o In our experiments over synthetic and real data anno-
tated with ordinal V-A labels, we show the superior
performance of the presented method with respect to
alternative approaches that ignore either the ordinal
structure of labels or the dynamic information.

II. RELATED WORK
A. Valence and Arousal annotations

The use of dimensional approaches to represent emotions
has increasingly gained popularity in the context of affective
computing and related fields [28]. Several possible dimen-
sions have been proposed to represent affect, with Valence
and Arousal emerging as the most popular ones [10], [29]-
[31]. However, in spite of their widespread use, generating
reliable annotations in V-A space has proven challenging, not
only in terms of achieving consensus but even in the way to
address data annotation.

Based on the original definition by Russell [3], several
authors directly targeted annotations in V-A space in the
continuous domain [29], [30], [32]. This means that each
(human) observer is asked to rate a video (either in segments
or in continuous time) with points in IR?, typically ranging
between -1 and 1 in each axis and constrained to be within
the unit circle [33]. Such annotations have proven very vari-
able, producing large dispersions between annotators, even
when trying to map a single specific emotion into V-A space
[34]. Some methods for the fusion of multiple continuous
annotations have been proposed [9], [35], but their ability
to model annotator’s subjectivity is limited. Indeed, while
fusion in continuous space might seem attractive from an
ordinal perspective, it actually implies assuming a linear
relationship between the ground truth and the observer’s
annotation. This is implicit in the work by Nicolaou et al. [9]
who, moreover, provides only an estimate of how annotations
change over time but lose their actual scale, which makes
it impossible to apply their method to obtain a properly

scaled consensus. In a very recent work, Gupta et al. [35]
make the linear mapping between observations and ground
truth explicit. Linearity is indeed a key assumption to derive
their equations within an EM framework. Extending the
mapping to consider non-linear relations would allow a better
modeling of annotator’s subjectivity, but this possibility has
so far not been explored.

On the other hand, some alternatives to the continuous
representation of V-A have been recently explored. For
example, Baveye et al. [31] provide a ranking between events
based on pair-wise comparison from a large number of
observers. Thus, they do not provide actual labels but an
ordering of events in V-A axes. This strategy is motivated by
the argument that human observers are better at producing
relative (e.g. pair-wise) comparisons than absolute ratings.
Yannakakis et al. [11] provide experimental evidence to
support this theory. They compared the V-A annotations
performed in continuous space against annotations produced
in a ordinal discretized V-A space and found the latter to be
clearly more consistent. Interestingly, they also showed that
if annotations are performed in continuous V-A space and
then discretized, their consensus also improves but not as
much as in the case of annotating directly in the discretized
ordinal space. Recent efforts in producing V-A labellings
have followed this direction [10].

Given the aforementioned advantages of using an ordinal
scale to represent Valence and Arousal dimensions, in this
paper we focus on the problem of fusing annotations which
are given according to discrete but ordered categories. As
will be discussed in Sec. II-B, this problem has been recently
applied in different domains. However, as far as we know,
this is the first time it is explored in the context of V-A affect
annotations.

B. Discrete label fusion

Fusion of discrete annotations is a necessity for several
fields and it is especially important when the true labels
(ground truth) are unknown. In such cases, we wish to esti-
mate the ground truth by merging the estimates (annotations)
from a number of observers. The basic intuition is that given
a sufficient number of observers, we should be able to extract
a consensus from their annotations that is reasonably close to
the ground truth. Straight-forward solutions to label fusion
include averaging, majority voting and extensions such as
weighting [14], [15] or iterative outlier removal [16].

A more principled solution consists on adopting a prob-
abilistic framework that jointly estimates the ground truth
and the annotators’ subjective perception of labels. The latter
is done by means of modelling a conditional probability
which indicates, for each observer, what is the likelihood
of annotating/perceiving a value given a fixed ground-truth
label (annotator’s perception model). Several approaches,
have followed this line, among which STAPLE (Simulta-
neous truth and performance level estimation) is the most
popular [17]. STAPLE employs an expectation maximization
(EM) algorithm to iteratively estimate the ground truth and
perception model parameters, such that the probability of



the observed annotations is maximized. STAPLE has been
successfully used in several applications and numerous ex-
tensions to the framework have also been proposed. Among
the most notable ones we can cite variants for handling
partial observations [19], variations or instabilities [20],
[21], [25] in annotator performances and variable difficulty
throughout the annotation task [26].

When focusing on ordinal affective annotations, an issue
of particular importance is the fact that labels are not simply
unrelated categories but, instead, they naturally follow a
relative ordering. For example, in the Valence axis, pleasant
is further from unpleasant than from neutral. Ignoring the
ordinal nature of labels has been found suboptimal, not only
within affective computing but for subjective annotations
in general [13]. However, this issue has been largely over-
looked in the label fusion literature. Among recent efforts
to incorporate ordinal constraints we find the methods from
Zhou et al. [22], based on entropy optimization within a
mini-max framework, Metrikov et al. [23], based on latent
trait models and Lakshminarayanan et al. [24], based on
Bayesian inference. The Ordinal Min-Max Entropy method
[22] incorporates ordinal constraints on the annotators’ per-
ception model by means of an auxiliary variable that converts
multi-label comparisons into a binary problem and optimize
the conditional entropy jointly across all possible binary
splittings. More closely related to our approach, [23] and [24]
use Gaussian priors to model the probabilistic labeling of
each annotator conditional to the true (but unknown) labels.
However, strictly speaking, the approach from Metrikov et
al. [23] cannot ensure that ordinal constraints hold, since the
Gaussian models for each label are completely independent
of each other. Lakshminarayanan et al. [24] resolve this
by a mapping strategy based on pre-defined thresholds that
naturally follow the desired ordering of labels, but this limits
the flexibility of the approach to model annotator differences.

In contrast to the previously described works, our method
employs an ordered probit model [36] to explicitly in-
corporate ordinal constraints in the annotators’ perception
model. This approach is both flexible enough to account
for annotator-specific differences in perception while still
ensures that ordinality is strictly fulfilled. Moreover, the
presented framework is also able to incorporate dynamic
information, useful when dealing with temporal sequences
of annotations. To the best of our knowledge, temporal
modelling has not been considered before in the context of
ordinal annotation fusion.

III. PROBLEM DEFINITION

Following, we formally describe the annotation fusion
problem addressed in this work. We assume that a training
set of N annotated sequences D = {D) D®) . DM} is
provided. Concretely, each D is an A xT matrix containing
a set of T" annotations for a total of A observers, where T
is the number of items per sequence '. From now on, we

!For notation simplicity, we use the same number of annotators A and T’
for each sequence. However, the proposed methods can also handle cases
where they vary across sequences

will refer to the the label assigned by annotator a to the
item ¢ as D((;t). Moreover, we consider the scenario where
Dg:) € {0 < ... <1 < L} is an ordinal variable taking L
possible values.

Similar to previous works on label fusion [17], we aim to
learn a parametric model maximizing the log-likelihood over
the training set D as:

argmax L(D | ) =log(p(D | §)) (1)
0
where 6 is the set of model parameters. For this purpose,
we define for each sequence a new set of latent variables
g® = {gi" g8 . g} representing the ground-truth
ordinal labels for each item. Given g, the log-likelihood
can be expressed as:

LD |6) = Zlog<ZHp 0| g;0) (g)> )

by assuming conditional independence between observer
annotations for each sequence and marginalizing over all the
possible latent ground-truth labellings g.

Given the parameters # that maximize Eq. 2, the probabil-
ity of a given ground-truth labelling g(*) for a given sequence
can be obtained from:

[, »(D1g®;6)p(g™)
> [T PO [g: 0)p(g)

where p(g) defines a prior over g.

p(g? D", 0) = 3)

IV. STATIC ORDINAL ANNOTATION FUSION

Following, we describe the proposed Static Ordinal Anno-
tation Fusion (SOAF). This model aims to solve the problem
defined in Sec. III by ignoring temporal information. For this
purpose, we assume that item ground-truth labels gﬁl) within
a sequence are independent. Under such assumption, Eq. 2
can be expressed as:

L= Z Zlog (Z Hp (D) gt =1,0"p(g" = l)),
i=1 t=1

“4)
Note that we have defined a set of independent parameters
6 = {0,60%,...,04} for each annotator. These parameters
model the conditional probability p(D,|g:,6%) and, thus,
describe the subjective perception of each annotator a for a
given latent ground-truth ordinal label (annotator perception
model). Under the defined model, the ground-truth probabil-
ity for any sequence item can be easily computed as:

[1, DY = 1)
21/ Ha p(Dat |gt = l/)

by assuming an uniform prior distribution over all p(g; (¢ ))

plg” = 1DV, §) =

&)
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Fig. 2. Illustration of the employed ordered probit model defining the
annotator perception models p(Dat|gt, 0¢). Top: Ideal objective annotator
perceiving equally-distant ordinal labels with no uncertainty (¢ = O0).
Middle: Real annotator where the perception of different labels is non-linear
but follows ordinal constraints (o ~ 0.5 modelling perception noise). Note
that for both annotators, the perceived distance between ordinal values are
determined by thresholds c. The monotonically increasing constraints over
these thresholds ensure that the likelihood of perceived labels are ordered.
Bottom: For both cases, matrices representing the conditional probabilities
p(Dat|ge, 0%) for each pair of ground-truth and perceived ordinal labels.

A. Ordinal annotator perception model

In order to incorporate the ordinal constraints into the
annotator’s perception model, we propose to use an ordered
probit model [36] to define conditional probabilities p(D,; =

llgr =1,0%) as:
¢ — U\ _ gt =V
o? o '

(6)
Here, ®(-) denotes the normal cumulative distribution func-
tion (CDF), and 0° {c?,0%} is the set of annotator
parameters. Specifically, ¢ = {c§ = —oc0 < ¢f < -+ <
¢} = oo} are monotonically increasing thresholds dividing a
continuous line into L bins corresponding to different ordinal
values. The difference between the two CDFs provides the
probability of a perceived label ! given the ground-truth
ordinal value !’. Moreover, % > 0 is the standard deviation
of Gaussian noise modelling uncertainty in the observer
annotations ( see Fig. 2 for an illustration). This model has
been previously explored in the context of facial expression
intensity estimation [37].
In order to ensure o > 0 and the monotonically increasing

p(Dar = llge =1',6%) = (I)<

constraints of thresholds c, we use a re-parametrization strat-
egy 51m11ar to [38]. Concretely, we define ¢; = ¢; +Zl7 52
and o = 72. With this parametrization, the maximization of
Eq. 4 becomes an unconstrained optimization problem which
can be solved as described in the following section.

B. Learning

In order to learn the optimal model parameters 6 given
a set D, we use standard gradient ascent. Specifically,
we employ the LBFGS Quasi-Newton method [39], which
generally provides a higher-convergence rate than first-order
approaches. The derivatives of the log-likelihood function
L(D | 6) w.r.t the annotator parameters 6% can be expressed
as:

= l\D( 9.0) op(DY)|gf"
=1) 66¢

=1

Zpgt

il |9t

)

where the gradients % with the defined ordinal
probit model can be easily computed as detailed in [38].

V. DYNAMIC ORDINAL ANNOTATION FUSION

One of the main assumptions made in SOAF ( Sec IV ),
is that ground-truth latent variables g for a given sequence
are independent. This assumption is suboptimal in temporal
sequences (e.g. videos) where ground-truth labels tend to
be temporally-correlated. In order to incorporate dynamic
information, we extend SOAF to Dynamic Ordinal Anno-
tation Fusion (DOAF). For this purpose, we follow a first-
order Markovian assumption where a given g; is dependent
on the previous ground-truth label g;—;. In DOAF, the log-
likelihood can be expressed as:

N
L=} log <Z [P(9§1))p(Dfi) | gt 6%
=1 g

T
Lo | 6,640 0: 0 >D
t=2

(8)

where p(DY’ | gi”;6%) = [, p(DS} | g”;67) and 67 =
{aqj, - oqp, . ap L} is a new set of parameters defin-
ing the label transition probabilities p(g¢|g:—1). Concretely,
we use a soft-max function:

e

Z e N Qs

probability constraints

plge =lgi—1 =1;07) = 9)

which ensures the conditional
S p(II') = 1 and p(Ill') > 0
Note that DOAF is a special case of a Hidden Markov
Model [40] (HMM) where latent states represent the ground-
truth labels and emission probabilities are deﬁned by p(D( ) |
0*). Therefore, marginal probabilities p(gt |D() 0) of item
latent labels can be computed using the forward-backward
algorithm [41] employed in HMMs. Similar to SOAF, we
assume a uniform prior distribution over initial latent ordinal

states p(g1)-



A. Learning

In DOAF, we use a similar learning procedure than the
one described in Sec. IV-B for SOAF. In this case, the
gradients of parameters §“ can be computed as defined in
Eq. 7. However, marginal probabilities p(g"”|D, ) need
to be obtained using the forward-backward procedure. On
the other hand, the gradient of transition parameters #” can
be computed as:

oL i i
== 3 [ 1 = il = )~ pll], (o)
Xsls' oL
where 1(-) is an indicator function and
pif = pla” =1lg,” = 1:0") (11)
pie =plo’ =Lg” =1 |DV:0).  (2)

Again, marginal probabilities p(gt(i) = l,g,g?l =1 | DW)
can be computed with the forward-backward procedure.

VI. EXPERIMENTS
A. Evaluation criteria and metrics

In order to compare the proposed SOAF and DOAF
frameworks with alternative approaches, we use two different
criteria. In the first one, we evaluate the prediction of ground-
truth labels. Formally, given the learned annotator perception
models represented by p(Dg:|g:), we estimate the most
likely ground-truth labels gg)e 4 for a new test sequence D™
(see Eq. 3). Assuming that we know the real annotations

563” for D™, we compare predictions and real labels for
each sequence item. For that purpose, we employ standard
metrics used in the context of ordinal regression [42], [43].
Concretely, we use the Pearson’s Correlation Coefficient
(CORR), Mean Absolute Error (MAE) and the Intra-Class-
Correlation Coefficient (ICC).

Despite the main goal of annotation fusion methods is to
predict ground-truth labels, evaluation under the aforemen-
tioned criterion is generally not feasible in real scenarios,
since the actual giﬁll is not known. In order to compare
different methods in the context of V-A annotations, we
use an alternative evaluation criterion. It is based on the
assumption that, given the perception model p(Dg|g:), we
should be able to predict new annotations for the observer
a given a predicted ground truth g( ) Formally, the pre-

pred*
dicted annotation for a given sequence and observer can be

computed as:
=2 _»(D

g

p(DYDY) ) g™ DE) L) (13)

where D\(;;), 4o tefers to the sequence annotations for all

the observers except a. Given that we know D((z*) for a
test sequence, the same metrics previously described can be
used to evaluate model’s performance. Note that this criteria
jointly evaluates the annotators model and ground truth
estimation, since both are needed to estimate the annotator

labellings. For instance, even if we had the optimal percep-
tion model for a given annotator, it would be impossible to
correctly generate his labelling for a given test sequence if
the estimated ground-truth was not accurate.

B. Baselines

In our experiments, we compare the proposed SOAF and
DOAF methods with alternative approaches that ignore either
the ordinal structure of labels (nominal) or the dynamic
information (static). Following, we describe them.

Majority Voting (MV): The ground-truth labelling is
predicted with a majority voting strategy. Concretely, the
estimated label for a given item is chosen as the majority or-
dinal level across all the annotators. Given that this approach
does not explicitly compute the annotator’s perception model
p(Dat|gt), we empirically compute it from the training
annotated sequences and the estimated ground-truth. MV
follows an static-nominal assumption.

STAPLE: This method is one of the most popular ap-
proaches for fusing annotations with nominal labels. (see
Sec. II-B and [17]). We have used our own implementation of
this method which also follows a static-nominal assumption.

Static Nominal Annotation Fusion (SNAF): This ap-
proach is equivalent to the proposed SOAF model but
modelling ordinal labels as nominal. Concretely, p(D+|g:)
for each annotator is defined using a parametrized soft-max
function (see Eq. 9). It can be easily shown that SNAF
maximizes the same log-likelihood function as STAPLE.
However, SNAF is trained using gradient-ascent whereas
STAPLE uses an Expectation-Maximization algorithm.

Dynamic Nominal Annotation Fusion (DNAF): In this
case, DNAF is equivalent to the proposed DOAF model but
modelling ordinal labels as nominal similar to SNAF. There-
fore, we can consider DNAF a dynamic-nominal approach.

Ordinal Minimax Conditional Entropy (OMME): This
method can be considered the state-of-the-art approach for
static ordinal annotation fusion (see Sec. II-B). In our
experiments, we use the implementation provided by the
authors of the original paper. Similarly to the case of MV, we
empirically compute the annotator conditional probabilities

P(Datlgt)-

C. Synthetic Experiments

To validate the benefits of the proposed framework while
fusing ordinal annotations of temporal sequences, we have
performed a set of experiments using synthetic data. The use
of these data allows to evaluate the performance of different
approaches while predicting latent ground-truth labels. As
explained in Sec. VI-A, this ground-truth is not known in
real data and, therefore, it is not feasible to evaluate methods
according to this criterion.

Data generation and experimental setup: In order to
create a synthetic dataset of annotated sequences D, we use
the following procedure. Firstly, we generate a DOAF model
(see Section V) by randomly defining a set of parameters
0 = {6',...,04,0P}. The number of ordinal levels and
annotators has been set to L = 6 and A = 4 respectively.
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Fig. 3. Illustration of the process followed to generate synthetic data
sequences. From top to bottom: (i) Matrices representing the annotator
perception models (A=4) and temporal transition probabilities from a
randomly generated DOAF model. (ii) Example of a ground-truth sequence
sampled according to the defined transition probabilities. (iii) Randomly
generated annotations according to the defined ground-truth sequence and
perception models.

Secondly, for each sequence D we sample the ground-
truth labels gﬁz)al by using the conditional probabilities
p(gt|g:—1;0P ) and a uniform prior distribution over p(g;).
Sequences length has been set to 7" = 50. Finally, for each
observer we generate his annotations Df; ) by sampling from
his perception model p(Dg¢|g:) and gff;zﬂ. Figure 3 illustrates
this process. Using this procedure, we have generated 100
synthetic datasets with 10 and 20 sequences for training and
testing respectively (randomly generating different DOAF
parameters for each dataset). Training sequences are used to
learn the different model parameters whereas test sequences
are used to compute the different metrics described in VI-A
Results and discussion: Table I shows the average results
over the 100 synthetic datasets . By looking into the results of
the compared methods, we can derive the following conclu-
sions. Firstly, MV obtains the worst performance among all
metrics. This was expected since it follows a static-nominal
approach and does not take into account the perception model
for each annotator. Secondly, static-nominal approaches such
as SNAF and STAPLE generally perform worse than static-
ordinal methods (OMME and SOAF). This shows the impor-
tance of taking into account the ordinal structure of labels
in this kind of problems. Thirdly, note that the dynamic-
nominal approach DNAF obtains slightly better results than
all the other static-nominal approaches by considering the
dynamic information present in temporal sequences of an-
notations. Finally, DOAF obtains the best performance in all
cases by taking into account both dynamic information and
introducing ordinal constraints in the annotator perception
models. To illustrate this conclusions, we show in Fig. 4 an
example of qualitative results obtained by SNAF, SOAF and
DOAF in the synthetic test sequence shown in Fig. 3.

D. Valence and Arousal annotations fusion

In order to evaluate the proposed method in the context of
V-A annotation fusion, we have used the database described
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Fig. 4. Examples of ground-truth predictions in a synthetic sequence for
SNAF, SOAF and DOAF. Note that SOAF predicts more accurately the
actual latent ordinal levels than SNAF, which models labels as nominal
variables. Moreover, SOAF predictions tend to be less temporally smooth
than in the DOAF case. This is because the latter incorporates dynamic
information which takes into account the conditional dependencies between
temporally consecutive items in the sequence.

TABLE I
OBTAINED RESULTS RESULTS ON SYNTHETIC GENERATED DATA

Ground-truth Predictions Annotation Predictions

CORR MAE ICC CORR MAE ICC

MV 0.859 0.648 0.853 0.674 0944 0.673
STAPLE [17] 0.869 0.648 0.862 0.737 0.790  0.736
SNAF 0.867 0.653 0.860 0.737 0.792  0.736
DNAF 0.901 0.501 0.895 0.740 0.783  0.739
OMME [22] 0.901 0.516  0.894 0.738 0.790  0.737
SOAF 0.928 0.420  0.923 0.744 0.771  0.743
DOAF 0.941 0.259  0.940 0.756 0.746  0.755

in [10]. To our knowledge, this is the largest database
providing a set of annotated videos using ordinal V-A labels.
Moreover, we have discarded databases with continuous
ratings, such as SEMAINE [30], because quantization of
continuous annotations does not result in ordinal data. In
contrast, ratings from [10] were annotated according to a
small set of ordered discrete labels, which can be validated
as an ordinal setting [11]. The rationale is as follows: with
only a few labels to choose from, you intuitively compares
among them. As the choices increase, this task is more
difficult. In the extreme case (continuous), it is impossible
for an annotator to keep strict ordinality and subsequent
discretization cannot fix that.

Database and experimental setup: The database consists
of 64 videos of human interactions -with a total duration of
approximately 3.5h- annotated by a maximum of 11 human
experts. Valence and Arousal dimensions are labelled on
different axes and represented with a set of 7 ordinal labels:
{positive, half positive, mild positive, neutral, mild negative
half negative, negative}. We have performed an 8-fold cross-
validation for both dimensions, where 56 videos have been
used for training and 8 for testing. Similar to synthetic
experiments, training videos are used to learn the annotators’
perception models which are then employed for evaluation
on test sequences. In the case of the Arousal dimension, we
do not use the lowest negative label since it never appears in
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Estimated ground-truth from a set of V-A annotations in a test video. Despite the noisy subjective annotations provided by different observers,

our method is able to estimate a sequence of ground-truth labels coherent with the non-verbal behavior displayed by the subject.

the dataset. In order to reduce computational complexity and
remove temporal redundancy, all sequences have been sub-
sampled to only contain time instances where any annotator
reported a change in the affective state.

Results and discussion: Given that ground-truth labels
gf,zl for real sequences are unknown, we use the sec-
ond evaluation criterion described in Sec. VI-A. Table II
shows the results obtained for each affective dimension
following the previously described cross-validation proce-
dure. We can see that the static-ordinal approaches OMME
and SOAF generally obtain better performance than static-
nominal methods (SNAF and STAPLE). Indeed, between
these four methods, the best performance for any metric
is always obtained by either OMME or SOAF. This shows
the advantages of considering labels’ ordinal structure in
this context. Secondly, DOAF outperforms static-ordinal
approaches by incorporating dynamic information into the
ground-truth labelling estimation. However, note that DNAF
does not actually outperforms SNAF. This suggest that the
advantage of modelling temporal correlations can only be
fully achieved if appropriately considering labels ordinality.
In conclusion, our results show the benefits of the proposed
DOAF model for V-A annotations fusion. Fig. 5 shows an
illustrative example of the estimated ground-truth labels by
DOAF in a test sequence.

VII. CONCLUSIONS

In this paper, we propose a novel framework for the fusion
of ordinal annotations in temporal sequences. This problem
is of special importance in the context of affective com-
puting, where collected data is typically formed by videos
of human interactions annotated in terms of V-A affective
labels. Recent works have shown that the consistency of
V-A annotations can be considerably improved if these are
performed based on an ordinal scale. Thus, in contrast to pre-
vious methods for annotation fusion, our approach explicitly

TABLE I
OBTAINED RESULTS ON AROUSAL AND VALENCE ANNOTATIONS OF
HUMAN INTERACTION RECORDINGS

Arousal Annotations Valence Annotations

CORR MAE ICC | CORR MAE ICC

MV 0.308 0.529  0.300 0.483 0486 0471
STAPLE [17] 0.343 0513 0337 0.496 0.463  0.479
SNAF 0.359 0.506  0.352 0.493 0462 0471
DNAF 0.332 0.538 0330 0.503 0482  0.497
OMME [22] 0.352 0516  0.349 0.514 0.481 0511
SOAF 0.368 0.497 0354 0.509 0.454  0.457
DOAF 0.400 0.492  0.391 0.542 0.445  0.516

introduces ordinal constraints into the annotators’ perception
model and incorporates dynamic information useful when
dealing with temporal sequences. In our experiments over
synthetic and real data, we show that the proposed method
outperforms alternative approaches which do not take into
account either the ordinal structure of labels or the dynamic
information. Future datasets may benefit from the presented
framework as it would help to provide more reliable ground-
truth to train and validate automatic affect analysis models.
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