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Abstract—In the past years, many studies have highlighted
the relation between deviations from normal facial morphology
(dysmorphology) and some genetic and mental disorders. Re-
cent advances in methods for reconstructing the 3D geometry
of the face from 2D images opens new possibilities for dysmor-
phology research without the need for specialized 3D imaging
equipment. However, it is unclear whether these methods could
reconstruct the facial geometry with the required accuracy. In
this paper we present a comparative study of some of the most
relevant approaches for 3D face reconstruction from 2D images,
including photometric-stereo, deep learning and 3D Morphable
Model fitting. We address the comparison in qualitatively and
quantitatively terms using a public database consisting of
2D images and 3D scans from 100 people. Interestingly, we
find that some methods produce quite noisy reconstructions
that do not seem realistic, whereas others look more natural.
However, the latter do not seem to adequately capture the
geometric variability that exists between different subjects and
produce reconstructions that look always very similar across
individuals, thus questioning their fidelity.
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photometric stereo; 3D Morphable Model; deep learning;

I. INTRODUCTION

The possibility to recover the 3D structure of objects from

2D pictures is a long-standing problem in Computer Vision

that is especially relevant for facial analysis. Besides the

well-known advantages that 3D imaging brings in terms of

robustness to illumination and pose, recent work has shown

that facial morphology can provide relevant information in

the context of health-care applications related to mental and

genetic disorders. Specifically, there is interest in the analysis

of deviations from the normal morphology of the head and

the face (craniofacial dysmorphology) that occur in certain

psychiatric disorders of developmental origin.

The relation between craniofacial dysmorphology and

mental disorders can be traced back many years ago, e.g.

from the distinctive facial characteristics of patients with

Down syndrome [1], but more recently distinctive pat-

terns have also been identified in several other disorders,

some of which of major importance, including autism [2],

schizophrenia [3], bipolar disorder [4], epilepsy [5], and

fetal alcohol syndrome [6]. Thus, craniofacial geometry has

been suggested as a potential index of early developmental

disturbance [4], [7]. However, in contrast to the evident

dysmorphology in diseases like Down syndrome, dysmor-

phology in other disorders can be very subtle to the extent

that it can hardly be identified by the human eye [4], [8]

and its magnitude is at the boundaries of current state of the

art methods for facial geometry modeling.

Recent advances in reconstruction methods have made it

possible to estimate the 3D geometry of a face from one

or more non-calibrated 2D pictures, producing results with

astonishing visual quality [9] [10]. Thus, a natural question

arises of whether such reconstructions could be sufficient

to model facial morphology at the accuracy required by

craniofacial dysmorphology studies. However, to the best

of our knowledge, there is no comparative study in the

literature that confronts different approaches to solve the

face reconstruction problem and analyzes the accuracy and

distinctiveness of the resulting surfaces.

In this work, we present a comparison between four dif-

ferent methods for 3D face reconstruction from 2D pictures.

To this end, we use data from the Stirling/ESRC 3D Face

Database, a publicly available corpus that includes both 2D

pictures and the corresponding 3D geometry, which serves

as ground truth. The methods selected for this comparison

cover the three major trends that currently exist to address

the 3D-from-2D face reconstruction problem, namely, (non-

calibrated) photometric stereo [11], statistical model fitting

[9] and deep learning [10], [12].

We reconstruct the 3D geometry from 100 subjects in the

database (54 females) using the selected methods and com-

pute the reconstruction errors and the flexibility of the meth-

ods to produce distinctive facial surfaces. The reconstruction

errors measure how much the reconstructions deviate from

the actual 3D geometry of the face. Nevertheless, this

comparison is not enough for a reliable comparison between

different methods. It is also important to take into account

if the surfaces produced by each method differ among them

to appropriately reflect the geometric variability that exists

between different subjects. Hence, we also compute the

geometric distances between all reconstructed surfaces by

each method and compare the resulting geometric variation

to the one observed in the ground truth geometries.

Our experiments show that none of the compared methods

exhibits an optimal performance. In terms of reconstruction

errors, we find that approaches based on deep-learning and

statistical model fitting perform similarly to each other,

978-1-5386-2335-0/18/$31.00 c©2018 IEEE



and significantly better than photometric stereo. Qualitative

inspection of the results suggests that the selected method

for photometric stereo can produce reconstructions that are

arguably implausible, which is not the case for the other

tested approaches. Indeed, statistical model fitting and deep

learning approaches seem to benefit from rather strong

priors that constrain the solutions to geometric configura-

tions producing always visually pleasant results. However,

this has also an impact in the geometric variability that

those methods can produce, which is clearly below that of

photometric stereo and, most importantly, well below the

geometric variability observed in the ground truth.

II. RELATED WORK

A. Statistical Model fitting

The most-widespread statistical models for 3D face recon-

struction are the 3D Morphable Models (3DMM). Blanz and

Vetter in [13] introduced the 3DMM to the community as

a statistical model based on a data set of 3D faces. The

model consists of a shape model and an albedo model,

separately, constructed using Principal Component Analysis

(PCA). The key problem that comes when constructing a

3DMM is that the 3D faces of the training set have to be in

dense point-to-point correspondence. Blanz and Vetter [13]

solved this issue using an optical flow algorithm based on

the flatting of the 3D faces to a UV-space and taking into

account that establishing a dense correspondence between

two UV images implicitly establishes a 3D-to-3D dense

correspondence. Paysan et al. [14] constructed the well-

known Basel Face Model (BFM) by applying the Nonrigid

Iterative Closest Point (NICP) algorithm [15] to compute

these dense correspondences directly between 3D faces.

The idea behind these models is that, if the set of 3D

faces is sufficiently large, one can reconstruct accurately

any new shape and texture as a linear combination of the

shapes and textures of the 3D faces in the data set. Following

this idea, Booth et al. [16] proposed a fully automated

pipeline to construct large scale 3DMM consisting on an

automatic landmark detector on 3D faces, a NICP algorithm

to compute dense correspondences and, finally, before the

PCA model is constructed, automatic removal of erroneous

correspondences. They also built what they called a Large

Scale Facial Model (LSFM) trained on 9663 3D faces.

Using a statistical model as the representation of the prior

knowledge of a face 3D structure allows us to reconstruct

a new 3D face from one or more photographs by finding

the linear combination of the model bases that best fits to

the given 2D image(s). Nevertheless, this is not a trivial

task. Essentially, fitting a 3DMM to 2D images implies

the optimization of an ill-posed problem. In an analysis-by-

synthesis manner, Booth et al. [17] proposed a method to fit

a 3DMM based on landmarks while Bas et al. [9] also used

edges. However, these two approaches only employ raw fea-

tures. Huber et al. [18] proposed to use local image features

like Scale Invariant Feature Transform (SIFT) or Histogram

of Oriented Gradients (HOG). In addition, Piotraschke and

Blanz [19] presented a method that reconstructs 3D faces

from multiple 2D images of one person, combining them in a

weighted manner that depends on the reconstruction quality

resulting from each input image. Such weighted combination

is carried out locally, splitting the surface in segments that

are later fused to obtain the reconstruction of the whole face.

Apart from 3DMM, other statistical models have been

proposed. Jin, et at., [20] used Non-negative Matrix Factor-

ization (NFM) instead of PCA to construct a facial model

and Jeni et al. [21], fitted a 3D point distribution model

using a fast cascade regressor based on landmarks to align

3D faces from 2D videos.

B. Deep Learning

In the last years, deep learning has been increasingly used

to solve complex problems in many different fields. With

this remarkable growth, it is not surprising that it is one

of the main approaches to solve the 3D face reconstruction

problem. However, deep learning algorithms require a large

amount of training data. This is the key obstacle to overcome

since there are not sufficiently large data sets and construct-

ing one is very challenging. Therefore, the training data in

this approach is as important as the deep learning algorithm

itself.

Jackson et al. [12] generated the training dataset by fitting

a 3DMM to the public 2D image dataset 300W [22], obtain-

ing a 3D face for each image. In order to enlarge the amount

of 2D images for each 3D face, they rendered additional

images of the same face from different 3D viewpoints. The

deep learning algorithm they used, denoted as Volumetric

Regression Network (VRN), was based on the “hourglass

network” of [23]. Tran et al. [10] also generated the training

data by fitting a 3DMM, in this case following an approach

based on [19]. They fitted the 3DMM to all the images in

a dataset and, then, combined the shape and texture vectors

from the same person.

A different approach for the generation of training data

was followed by Richardson et al. [24]. They rendered 2D

images directly from a 3DMM under random lightning con-

ditions. The learning process was iterative: at each iteration,

together with the 2D image, the output from the previous

iteration is considered. In this way, the network can be

trained to correct the previous prediction based on both the

original input and the output from the previous iteration.

Duo et al. [25] trained a deep neural network (DNN) that

predicts the identity and expression parameters (separately)

of a 3DMM using a single frontal image from each person.

The DNN consists of the VGG-Face model [26], a sub-

convolutional neural network (subCNN) that fuses features

from the intermediate layers of VGG-Face for regressing

the expression parameters, and two multi-task learning loss

functions: one at the end of VGG-Face that predicts the



identity parameters, and another one at the end of the

subCNN. The training data consisted of real 3D scans with

real 2D images (used to initialize the DNN) and synthetic

2D images rendered from a 3DMM similarly to [24] (used

for fine-tuning).

C. Photometric Stereo

Photometric stereo is a technique originally introduced

by Woodham [27] that estimates surface normals from 2D

images by observing the object under different lightning

conditions. Woodham’s work assumed a rigid geometry of

the object, fixed Lambertian reflectance, fixed camera pose

and uniform albedo.

One relevant work based on [27] is the one proposed

by Kemelmacher-Shlizerman and Seitz [28], whose work

inspired many others. They proposed a 3D face reconstruc-

tion method that used multiple in-the-wild 2D images. The

algorithm first detects landmarks and aligns all photographs

to frontal pose. Then, it recovers the initial shape and

lighting conditions based on photometric stereo and, finally,

uses local view selection to refine the model. However, this

method only reconstructs a 2.5D depth map. This work

was extended by Roth et al. [29] who jointly estimated the

surface normals, lighting conditions, albedo and pose angles

combining landmark constraints and photometric stereo.

While the method proposed in [29] improves the work by

Kemelmacher-Shlizerman and Seitz [28], it still uses all

the 2D images in the training set at once to reconstruct

a representative face shape of a single person. Roth et al.

[11] identified this issue and proposed to select different

consistent subsets of images for each vertex of the face,

using the typical expression of the person to drive the

reconstruction. They improved the algorithm proposed in

[29] by including a coarse-to-fine scheme to better capture

the fine details in the reconstruction and modifying the

template personalization.

Liang et al. [30], also based on [28], introduced a method

that reconstructs the whole head by clustering multiple 2D

images according to the azimuth angle of the estimated 3D

poses. Each cluster is used to reconstruct a different part

of the head. Following a similar idea of reconstruction by

parts, Zeng et al. [31] proposed to use multiple reference

models to search for the one that fits more accurately each

component of the 2D facial image.

III. EVALUATED 3D FACE RECONSTRUCTION METHODS

A. 3D Morphable Model fitting

Fitting using edges (3DMMEdges) [9]: This method fits

the BFM under the assumption of a scaled orthographic

projection, i.e., the mean distance from the object to the

camera is large with respect to the variation in depth over

the object. This way, the projection of a 3D point does not

depend on the distance to the camera.

The basic idea of this method is to fit a 3DMM using

landmarks and edges. First, landmarks are detected using

[32] and an initial estimate of the shape and pose param-

eters are extracted by fitting the 3DMM using only these

landmarks. This initialization is improved with a fit to edges

using iterated closest edges fitting. The edges are detected

in the input image with the Canny edge detector. Finally, the

fitting parameters are optimized using a hybrid cost function

containing landmark, edge and shape model prior terms.

B. Deep Learning

Volumetric CNN Regression (VRN) [12]: As we have

stated before, this CNN is based on the “hourglass network”.

It uses two of these modules stacked together, the second

one to refine the output of the first one. The hourglass

module has an encoding-decoding structure. The encoding

part consists of a set of convolutional layers that are used to

compute a feature representation of fixed dimension. This

representation is mapped back to the spacial domain with

the decoding part.

The training data set is generated by fitting a 3DMM built

from the combination of the BFM and the FaceWareHouse

model [33] to the 300W dataset [22] of unconstrained

images. Using face profiling, more images are rendered to

enlarge the amount of 2D images per 3D face.

Very Deep Neural Network (3DMM-DNN) [10]: The

CNN used in this method is a modified version of the state-

of-the-art ResNet network [34]. The last fully-connected

layer is modified to output the 3DMM feature vector.

The training data is generated by fitting a 3DMM (BFM)

following an approach based on [19]. They first fit the

3DMM to all the images in the CASIA WebFace dataset

[35] with a modified version of the landmark-based single

fitting methods [36] and [37]. Then, the shape and texture

representations that are extracted from 2D images of the

same subject are linearly combined to form a single shape

and texture vectors for each subject. The weights of the

linear combination are the confidences of the landmark

detector for each image. Finally, the training data set is

composed by a fitted 3DMM (shape and texture vectors)

and several images per person from the CASIA WebFace

dataset.

C. Photometric stereo

Adaptative photometric stereo (APS) [11]: Given a tem-

plate mesh and a photo collection of a person, a personalized

3D template face is firstly constructed by fitting a 3DMM

with a method based on [38]. The 3DMM is fitted jointly to

all the images of the collection of a person by assuming

common identity coefficients but unique expression and

pose parameters per image. The lighting, the albedo and

the surface normals are estimated via photometric stereo

minimizing a loss function. The authors enrich this loss

function with a “dependability” scalar that assigns higher



weights to pixels pointing towards the camera, since these

should be less sensitive to pose estimation changes. Finally,

they use a coarse-to-fine scheme to first fit the overall face

shape and later adapt to the details present in the collection.

IV. EXPERIMENTAL SETUP

A. Data

The evaluation is carried out over the Stirling/ESRC 3D

Face Database 1. This database consists of 3D scans and 2D

images of 54 female and 46 male subjects.

The 3D scans are captured with a DI3D camera system.

Subjects are imaged showing neutral expression and wearing

a cap to ensure that the face is entirely captured.

The set of 2D images that are given for each subject

contains photos with different facial expressions, such as

happiness, disgust, fear, etc. Additionally, photos with dif-

ferent illumination conditions and different 3D poses are

provided.

For the methods that only take one 2D image as input

(3DMMEdges, VRN, 3DMM-DNN), the frontal photos with

neutral expression have been selected. For the photometric

stero-based method, APS, all the given images of the subject

have been used to reconstruct the 3D face.

B. Comparison Procedure

Given a 3D face reconstruction M and a ground truth

scan MGT , the reconstruction error of M is computed in

three main steps: landmarks detection, shape alignment and,

finally, computation of the geometric distance between the

aligned reconstructed face and the ground truth (reconstruc-

tion error).

The first step is to detect landmarks in the 3D faces. We

used a semi-automatic approach based on automatic land-

mark detection using [39] followed by manual inspection

and correction when necessary. In the case of 3DMM fitting

it was not necessary to perform landmark detection since

they can be directly extracted based on the vertex labels

provided by the 3DMM.

The detected landmarks are used to perform geometry

alignment by means of Procrustes analysis. This step re-

moves any similarity transformation between the two meshes

to compare, so that only shape deformation remains. The

Procrustes analysis is applied from M to MGT and returns a

scale b, a rotation matrix T and a translation c. This transfor-

mation is applied to the shape M by M ′ = bMT + c. Thus,

the reconstruction error will be computed by comparing M ′

and MGT .

However, the 3D faces M ′ and MGT do not cover the

same area of the face. In fact, the facial scans may also

contain part of the neck and the ears, which is not the case

for some reconstruction methods. Therefore, to compute a

legitimate reconstruction error, we need to ensure that both

1http://pics.stir.ac.uk/ESRC/

meshes cover approximately the same area. To this end,

a facial region is established before computing the error.

This facial region is defined as the set of vertices whose

geodesic distance from the detected landmarks is within

a threshold: F (M) = {v ∈ M | mini{dgeodesic(v, li)} <

threshold, where li is a landmark}. In this work, we have

experimentally established this threshold to 60 mm for all

the compared meshes.

Finally, the reconstruction error is computed between

facial regions, F (M ′) and F (MGT ), as

1

2
d(F (MGT ), F (M ′)) +

1

2
d(F (M ′), F (MGT )). (1)

The distances d(S, S′) are defined as

d(S, S′) =
1

N

N∑

i=1

minj ||vi − v′j ||2

with vi ∈ S and v′j ∈ S′.

We compute the reconstruction error of all the 3D face

reconstructions for each subject following the pipeline ex-

plained above.

As mentioned previously, besides the reconstruction er-

rors, we also investigate the capability of the different

methods to capture the geometric variability of faces from

different individuals. To this end, we compute the geometric

distance between pairs of ground-truth or reconstructed

scans using the same pipeline described for the reconstruc-

tion error. In this case, however, we are quantifying how

much can the facial geometry change between pairs of

individuals (if using pairs of ground-truth scans) or how

much can a method adapt its output to the face of different

individuals (when using pairs of reconstructions from a given

method).

V. EXPERIMENT RESULTS

We have computed the reconstruction errors with re-

spect to the ground truth scans of each method for all

the 100 subjects from the Stirling/ESRC Face Database,

as explained in Section IV. Figure 3 shows a box plot,

with the reconstruction errors for each of the evaluated

methods. We observe that VRN is the one that has the lowest

reconstruction error, while APS is the one that reconstructs

the worst. Even though the median of the VRN is lower

than the median of the APS, the errors of the latter are

more concentrated since the interquartile range (IQR) is

smaller. 3DMMEdges and 3DMM-DNN show fairly similar

reconstruction errors.

Figure 1 shows a frontal neutral image, the ground truth

scan and the 3D faces reconstructed with all the methods

of four different subjects from the Stirling/ESRC 3D Face

Database. Figure 2 shows the reconstructions from Figure 1

also including the texture. 3D faces from 3DMMEdges are

not shown since the texture is not estimated by this method.



(a) Frontal neutral image (b) Scan (c) 3DMMEdges (d) VRN (e) 3DMM-DNN (f) APS

Figure 1: Reconstructed 3D faces and ground truth scans.

Comparing Figures 1 and 2, we can see that the texture

is extremely helpful to produce visually convincing results.

For example, we can easily recognize the reconstructions

displayed in Figure 2c with their corresponding 2D pictures.

However, it is far more challenging to do the same from

Figure 1d, even though both reconstructions (in Figure 2c

and 1d) are exactly the same: the only difference is the

presence of texture in Figure 2c.

From Figure 1 we notice that 3DMMEdges and 3DMM-

DNN produce rather similar reconstructions. This is because

both methods use the BFM. 3DMMEdges fits the BFM to

the images while 3DMM-DNN is trained with data generated

by fitting the BFM. This phenomenon is consistent with the

results shown in Figure 3, since, as we have stated before,

both methods have similar reconstruction errors.

Also consistently with Figure 3, in Figure 1 we can see

that APS is not able to reconstruct well the facial shape.

Nevertheless, some details are indeed captured. For example,

the nose of the first subject, which is not reconstructed that

well by any of the other methods.

Finally, it is interesting to notice that some methods

produce facial surfaces that tend to look very similar. This is

something to consider when evaluating a face reconstruction

method, since it might not capture the local details of a

person’s face, which implies that the reconstruction is not

faithful.

With this in mind, we computed the geometric distances

(Eq. (1)), between every pair of faces reconstructed with

the same method. One would expect that the geometric

distance between reconstructions of two different subjects

are, at least, similar to the geometric distance between the

corresponding scans. However, Figure 4 shows that these

distances are not as large as expected.

As we have predicted, while APS has the largest er-

ror, it is also the method that yields the most distinc-

tive reconstructions, capturing geometric details that help

to differentiate between different subjects and producing

geometric differences in the same range as the ground

truth scans. In contrast, 3D faces reconstructed with VRN,

3DMMEdges and 3DMM-DNN look alike across subjects,



(a) Frontal neutral image (b) Scan (c) VRN (d) 3DMM-DNN (e) APS

Figure 2: Reconstructed 3D faces and ground truth scans with texture.

Figure 3: Reconstruction errors for each of the evaluated

methods.

with major differences that are only apparent in case of

different genders.

Figure 4: Geometric distances between ground truth scans

and between face reconstructions of different subjects for

each of the evaluated methods.

VI. CONCLUSIONS

We present a qualitative and quantitative comparison be-

tween methods of the three main approaches currently avail-



able to solve the problem of 3D face reconstruction from

2D images: 3DMM fitting, deep learning and photometric

stereo. To this end, we reconstruct the facial geometry of 100

subjects from the ESRC/3D Face Database with four differ-

ent methods: one based on 3DMM fitting (3DMMEdges),

two based on deep learning (VRN and 3DMM-DNN), and

one based on photometric stereo (APS).
In the quantitative comparison, we evaluate the recon-

struction errors for all the methods and we see that VRN,

3DMMEdges and 3DMM-DNN perform similarly among

them and produce consistently lower reconstruction errors

than APS. However, in qualitative terms, we notice that

VRN, 3DMMEdges and 3DMM-DNN do not capture the

local details that help distinguishing the facial shape of

an individual from the rest, ending up with very similar

reconstructions across subjects. In contrast, APS captures

particular details that are specific for each person. We

quantitatively confirm this observation by computing the

geometric distances between pairs of 3D faces reconstructed

with the same method. We see that, indeed, APS is the

one with highest distances between its reconstructions, while

VRN is the one that less differentiates between subjects.
In addition, we find that the 3DMM-DNN method, despite

being a deep learning algorithm capable of learning highly

complex functions, has the same limitations as the 3DMM

that was used to generate its training dataset, confirming

the relevance that the training data set has in deep learning

approaches.
These conclusions call into question if current 3D face

reconstructions are sufficiently correct so as to model facial

morphology to the extent of detail needed by craniofacial

dysmorphology studies. In these studies it is essential that

the 3D facial mesh is plausible in order to be sure that

any abnormality is intrinsic to the subject and not due to

the reconstruction process, but it is also crucial that the

reconstructions capture local details specific to each person

so its abnormalities, if any, are captured. Unfortunately, none

of the methods compared in this paper seem to fulfill these

requirements. On one hand, some methods always build

plausible facial surfaces but fail to capture subject-specific

details while, on the other hand, methods that capture local

details tend to reconstruct distorted surfaces that might in-

correctly suggest the presence of dysmorphology in pictures

from faces with normal morphology.
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