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Abstract—In this paper we present a system that is able to
estimate head pose using only depth information from consumer
RGB-D cameras such as Kinect 2. In contrast to most approaches
addressing this problem, we do not rely on tracking and produce
pose estimation in terms of pitch, yaw and roll angles using
single depth frames as input. Our system combines three different
methods for pose estimation: two of them are based on state-of-
the-art landmark detection and the third one is a dictionary-
based approach that is able to work in especially challenging
scans where landmarks or mesh correspondences are too difficult
to obtain. We evaluated our system on the SASE database,
which consists of ∼30K frames from 50 subjects. We obtained
average pose estimation errors between 5 and 8 degrees per
angle, achieving the best performance in the FG2017 Head
Pose Estimation Challenge. Full code of the developed system
is available on-line.

I. INTRODUCTION

Human head-pose estimation has attracted a lot of interest
because it is usually the first step of many face analysis tasks.
It is an important aspect in facial motion capture, human-
computer interaction and video conferencing, as well as a
prerequisite for face recognition or facial expression analysis.
Head pose estimation has traditionally been performed on
RGB images, but recent advances in 3D geometry acquisition
have led to a growing interest in methods that operate on
3D data. These methods are less sensitive to changes in
illumination and viewpoint than 2D image-based approaches,
which makes them more accurate and robust [1].

The goal of head pose estimation is to predict the relative
orientation between the target head and the viewer or camera.
It is usually parametrized by the heads pitch, yaw and roll
angles. An early attempt to classify head pose estimation
methods from a methodological perspective was presented
by Murphy et al. [2], who proposed 8 categories including
appearance template methods, flexible models, non-linear re-
gression and tracking. While that classification included both
2D and 3D methods, in this paper we focus on head estimation
based exclusively on depth information. This considerably
reduces the number of categories to: geometric methods [3],
[4], appearance methods [5], [6], [7], regression methods [8],
flexible models [9], [10] and tracking methods [5].

An important aspect of 3D head pose estimation algorithms
is whether RGB data or temporal information are used. Firstly,
RGB data can provide complementary information to the one
provided by depth data, especially at the detection stage, but
it is likely to reduce the robustness to illumination that is
inherent to 3D-only data. It is also very popular to make

use of dynamic information to improve head pose orientation
results. However, algorithms using tracking often benefit from
the fact that test sequences usually start with near-frontal head
orientations and, therefore, it is not clear their robustness to
detect initial head poses other than frontal, which are arguably
more challenging.

In this paper, we present an approach for accurate static
3D head pose estimation which is able to perform head-
pose estimation using only depth information from a single
Kinect 2 frame of a person sitting in front of a camera. This
setup has been specified in the FG2017 Head-Pose Estimation
Challenge [11]. In contrast to most existing approaches, we
base our system in the detection of 3D facial landmarks, whose
positions are later used to derive geometry- and patch-based
pose estimators. A key aspect of the proposed system is the use
of Shape Regression with Incomplete Local Features (SRILF)
[12] for landmark localization. This algorithm provides state
of the art landmark localization accuracy with no prior initial-
ization and is inherently tolerant to occlusions or missing data.
The latter is very important when capturing moderate or large
head rotations with a single-view depth sensor such as Kinect 2
since, in such cases, large parts of the face become unavailable
due to self-occlusions. Our system is complemented with a
secondary pose estimator based purely on patches sampled
randomly on the head region to account for potential failures
of the landmark-based estimation. Our tests on the SASE
database [13] provided in the FG2017 Head-Pose Estimation
challenge, showed average estimation errors of 7.82, 6.65 and
5.39 degree for pitch, yaw and roll angles, respectively.

II. RELATED WORK

As aforementioned, an important aspect of 3D head pose
estimation algorithms is whether or not they use RGB data
and tracking. Only few of methods has addressed this problem
without the use of temporal information.

For instance, Sun and Yin proposed a geometric feature
based pose estimation approach based on 3D facial models [3].
The pose orientation was estimated using a symmetry plane. Li
and Pedrycz [4] developed a central profile-based 3D face pose
estimation algorithm. The central profile is the intersection
curve, that starts from forehead center, goes down through
nose ridge, nose tip, mouth center, and ends at a chin tip. It is
also called symmetry plane. They defined an objective function
for conducting the Hough transform in parameter space that
maps face profile to an accumulator cell. The face profile
corresponding to the maximum accumulator cell was regarded
as the central profile. Once the symmetry plane had been978-1-5090-4023-0/17/$31.00 c©2017 IEEE



completed, two angles (roll and yaw) were determined, since
the objective function was based on three parameters. Based
on the detection of central profile, nose tip was detected and
pitch angle was estimated using the coordinates of three points
nose tip, nose ridge point and nose bottom point. Valle et al.
[14] also presented a free-tracking algorithm that estimates
the head pose, but they estimated only one yaw angle from
unrestricted 2D gray-scale images. In order to obtain a discrete
head-pose estimation, they proposed a classification scheme,
based on a random forest, where patches randomly extracted
from the image cast votes for the corresponding discrete head-
pose angle. Papazov et al. [5] presented a real-time system
for 3D head pose estimation using a commodity depth sensor
such as Microsofts Kinect. The proposed method consists of an
offline training and an online testing phase. In both phases, 2D
information was used for face detection. After that, a triangular
surface patch (TSP) descriptor, which encodes the shape of
the 3D face surface within a triangular area, was employed
for final angle estimation. For testing, the authors utilized two
approaches: tracking mode and detection mode (static).

Another free-tracking approach was presented in [6]. Bre-
itenstein et al. developed an error function that compares
the input range image to precomputed pose images of an
average face model. In an offline step, range images of an
average face were rendered for many poses, and the resulting
reference pose range images were saved. For each pixel
they computed signatures that are distinct for regions with
high curvature, such as the nose tip. This yielded a set of
candidate nose positions and orientations that were used as
head pose hypotheses. Then they computed the error between
the reference pose range images corresponding to the pose
hypotheses and the input range image using a novel error
function. The match with the lowest error yielded the final
pose estimation and a confidence value. In [15], an approach
was presented to estimate the 3D position and orientation of
head from single RGB and depth images. 2D Scale-invariant
feature transform (SIFT) features were used together with
3D histogram of oriented gradients (HOG) features, which
were extracted in a pair of RGB and depth images captured
synchronously. Random forests approach were then applied
in order to formulate pose estimation as a regression problem,
due to their power for handling large training data and the high
mapping speed. Finaly, the mean-shift method was employed
to refine the result obtained by the random forests.

Similarly, Fanelli et al. [8] used random forests to handle
large training datasets and formulated a real-time head pose
estimation as a regression problem for tracking purposes.
In [7], authors proposed a fusion approach to address real-
time head pose estimation. They constructed a system able
to recover itself (in cases where the tracking was lost) by
combining a frame independent decision tree based estimator
with a personalized template tracker.

An alternate approach, using depth as well as intensity
information, was presented by Baltrusaitis et al. [10]. The
authors presented 3D Constrained Local Model (CLM-Z) for
the facial feature tracking under varying pose. A two-step

CLM fitting strategy was employed: performing an exhaustive
local search around the current estimate of feature points
leading to a response map around every feature point, and
then iteratively updating the model parameters to maximize a
posterior probability until a convergence metric is reached. For
fitting, they used Regularised Landmark Mean-Shift (RLMS).
Another relevant paper, by Padeleris et al. [16], estimated the
pose of an input Kinect sensor depth map by finding the
3D rotation of a template that best matched the input. The
proposed method searches for a view at which the rendered
image matches the reference depth image obtained during an
initialization phase. At run time, the method searches the 6-
dimensional pose space to find a pose from which the head
appears identical to the reference view. This registration was
treated as an optimization problem that was solved through
Particle Swarm Optimization (PSO). One more approache
based on PSO was presented by Meyer et al. [9]. They
performed pose estimation by registering a morphable face
model to the measured depth data, using a combination of
particle swarm optimization (PSO) and the iterative closest
point (ICP) algorithm.

Martin et al. [17] presented approach for head pose esti-
mation on consumer depth cameras that works without prior
knowledge of the tracked person and without prior training
of detector. To achieve this, they combined an algorithm to
generate and track a model of the head with feature based
head pose estimation. This algorithm was based on tracking a
head model using the iterative closest point algorithm.

III. PROPOSED SYSTEM

A block diagram of the proposed system is shown in
Fig. 1. We start by approximately isolating the head region
using clustering and use the obtained result to build a 3D
mesh M that contains the head and a variable part of the
shoulders. Mesh M is fed to the SRILF algorithm [18] with
the aim to automatically detect 12 prominent facial landmarks.
The SRILF algorithm performs both detection of the visible
landmarks and estimation of potentially occluded landmarks.
Thus, if successful, the algorithm always returns an estimate of
the coordinates for all 12 targeted points. Landmark detection
details are provided in Section III-A.

Once facial landmarks are available, we use two comple-
mentary approaches to estimate the head pose (Section III-B).
Firstly, we perform a least-squares estimation of the eye-line
and frontal-plane of the face which provide straight-forward
geometric estimates of the head pose. The second estimate is
based on regression over local surface descriptors (appearance)
centered at the landmark points. While these two estimates are
conceptually quite different, in practice, we will see that in
practice they produce similar results (Section IV-A).

In a vast majority of cases (∼ 90%) the above steps are
sufficient to accurately estimate the head pose. The remaining
10% of cases are especially challenging scans, typically due to
i) very large rotations, with self-occlusion of large portions of
the face, and/or ii) low quality scans due to imaging artifacts.
In such cases, we use an alternative estimate of the head



Fig. 1. Block diagram of the proposed head pose estimation method

pose based on dictionary learning (Section III-C). It should
be emphasized that the system automatically chooses whether
to use the landmark-based or dictionary-based estimates on a
case-by-case basis, with the following rationale:
• If landmarks are accurately detected, their estimate of

the head pose is more precise than the dictionary-based
estimate.

• If the SRILF algorithm cannot produce a reliable esti-
mate of landmark positions, the dictionary-based esti-
mate is the only one available.

• If both landmark-based estimates (geometric and local
descriptor regression) do not coincide, it is very likely
that landmarks have been incorrectly detected. Thus,
dictionary-based estimate should be used.

A. 3D Landmark Detection

We use Shape Regression with Incomplete Local Features
(SRILF) [18] to locate the following 12 facial landmarks:
inner and outer eye corners, nose corners, mouth corners, nose
root, nose tip and chin tip. The SRILF algorithm combines

the response from local feature detectors for each of the
targeted landmarks with statistical constraints that ensure the
plausibility of landmark positions on a global basis. The
algorithm has three components: 1) selection of candidates
through local feature detection; 2) partial set matching to infer
possibly missing landmarks; 3) combinatorial search, which
integrates the other two components.

1) Selection of candidates: The selection of candidates is
performed independently for each targeted landmark. Given
a mesh M and a landmark x` to be targeted, a similarity
score s`(v) is computed for every vertex v ∈ M; the set
of candidates C` for landmark x` are the %` highest scoring
vertices:

C` = {v ∈M|O(s`(v)) ≤ %`} (1)

where O() is the (descending) order function. The score s`(v)
is based on the similarity of local surface descriptors with
respect to a descriptor template derived at training time. The
SRILF implementation currently available1 uses Asymmetry
Pattern Shape Contexts [19] as local descriptors.

As in many other algorithms, it is expected that one of
these candidates will be close enough to the correct position
of the landmark. Nonetheless, the number of false positives
(i.e. vertices that produce high similarity scores even though
they are far from the correct landmark location) can change
considerably for different landmarks, as well as from one facial
scan to another, making it difficult to choose the number of
candidates that should be retained.

While many approaches try to retain large numbers of
candidates to make sure that at least one will be reasonably
close to the desired landmark position, SRILF determines the
number of candidates as an upper outlier threshold from the
distribution of false positives over a training set. This implies
that, in the vast majority of cases, a candidate that is close
enough to the target landmark will be detected, but a small
proportion will be missed. Hence, for each targeted landmark
there will be an initial set of candidates that may or may
not contain a suitable solution and we need to match our set
of target landmarks to a set of candidates that is potentially
incomplete. This is analogous to the point-matching problem
found in algorithms that search for correspondences. However,
the human face is a non-rigid object and these point-matching
algorithms are typically restricted to rigid transformations.

2) Partial set matching: The second component of the
algorithm aims at dealing with the above problem. Based on
the priors encoded in a statistical shape model, it uses a subset
of the landmarks (i.e. those with suitable candidates) to infer
the most likely position of the ones that are missing.

Let x = (x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL)
T be a shape

vector, constructed by concatenating the coordinates of the
L targeted landmarks in 3D, and let x, Φ and Λ be the
mean shape, eigenvector and eigenvalue matrices, respectively.
Given a shape for which we only know part of its landmarks,
we could split it in the known (or fixed) part xf and the
unknown (to infer or guess) part xg . Thus, our objective is to

1http://fsukno.atspace.eu/Data.htm#SRILF 3dFL



infer the coordinates of landmarks xg so that the probability
that the resulting shape complies with the PCA model is
maximized, ideally without modifying the coordinates in xf .

Let Pr(x) be the probability that shape x complies with
the model. Assuming that Pr(x) follows a multi-variate
Gaussian distribution N (0,Λ) in PCA-space, this probability
is proportional to the negative exponential of the Mahalanobis
distance and it can be shown [18] that maximization of Pr(x)
with respect to xg yields:

xg = xg − (Ψgg)−1Ψgf
(
xf − xf

)
(2)

where Ψgg = ΦgΛ−1(Φg)T , Ψgf = ΦgΛ−1(Φf )T and Φ is
split in Φf and Φg according to xf and xg (see [18]).

3) Combinatorial search: The third component of the al-
gorithm integrates the two previous steps into a combinatorial
search. It consists of analyzing subsets of candidates and com-
pleting the missing information by inferring the coordinates
that maximize the probability of a deformable shape model.

Formally, let F and G be the sets of fixed and to-infer
coordinates, respectively, with F ∩ G = ∅ and F ∪ G =
{1, 2, . . . , 3L}. The goal of the combinatorial search is to
dynamically choose the splitting into F and G to minimize
the localization error:

argmin
F
{‖x− x̂‖2} (3)

where x are the true landmark coordinates and x̂ is the
algorithm’s estimate. The key concept here is that only the
coordinates in F will be based on image evidence (e.g. the
candidates) and the rest will be treated as missing data. Thus,
x̂g will be obtained by inference and it can be expressed as a
function of x̂f , making more apparent that the minimization
looks for the optimal subset F :

argmin
F
{‖xf − x̂f‖2 + ‖xg − f(x̂f )‖2} (4)

with f(x̂f ) as defined in eq. (2). Because the true coordinates
x are unknown, we cannot explicitly compute the above errors
and need an indirect estimate instead. The SRILF algorithm
does this by minimizing (subject to statistical plausibility):

argmin
F

(
− |F| − exp

(
−
∑
`∈F

min
c∈C`
‖x̂` − c‖2

))
(5)

where C` is the set of candidates for the `-th landmark x̂`.
Intuitively, eq. (5) can be understood by noticing that the main
component of the cost is the cardinality of F , i.e. the number
of landmarks that can be successfully included in x̂f while
keeping the shape statistically plausible. Upon equality of |F|
the cost function increases with the distance from x̂ to the
nearest candidate per landmark. These distances to the nearest
candidates have a different meaning for fixed and inferred
landmarks and help understand the way the algorithm works.

Fixed landmarks {x̂`}`∈F are directly sampled from can-
didates to guide the combinatorial search. Thus, their nearest
candidates are known beforehand and their distance to them is
just the reconstruction error of the statistical shape model. For

Fig. 2. Orientation of the head in terms of pitch, roll, and yaw angles

the remaining landmarks, {x̂`}`∈G , positions are statistically
inferred from eq. (2) independently from their candidate sets
(Fig.3). It would be expected that better predictions generate
inferred landmarks that are closer to their corresponding
candidates, resulting in lower cost values.

The minimization in eq. (5) is addressed by testing all
possible combinations of 4 candidates, which constitute the
initial x̂f . The shape is completed by inference of x̂g from
eq. (5) and is checked against the statistical constraints of the
shape model. As long as the generated shape is statistically
plausible, candidates are added to x̂f from the remaining
landmarks in a sequential forward selection strategy looking
for the maximum possible |F|.

An important aspect of the splitting between F and G is
that it inherently provides tolerance to distorted or missing data
(occlusions). Notice that there is no prior assumption regarding
what landmarks can be in F or G nor the cardinality of the two
sets and the splitting is performed dynamically on a case by
case basis. This is an advantage in applications such as head-
pose estimation with sensors like Kinect, which capture depth
information from a single view. Under large head rotations,
the generated depth maps will have large parts of the face
missing due to self-occlusions and it is crucial to be able to
exploit partial information.

B. Landmark-based pose estimation

Once facial landmarks are extracted, we can estimate head
pose, represented by three Euler angles also called as yaw (φ),
pitch (θ) and roll (ψ) angles. Pitch (nodding) is the rotation
around the horizontal axis, which in our case is the X axis.
Yaw (shaking) is the rotation around the vertical axis of the
body (Y axis). Roll (tilting) is the rotation around the axis
perpendicular to two previous axes. In our case, this is the Z
axis, which is perpendicular to the camera (Fig.2).

We derive two different landmark-based pose estimates, a
geometric estimate and an appearance estimate:

1) Geometric estimate: It is based on least-squares esti-
mates of simple geometric entities that can approximately
describe the head pose. Specifically, we estimate the eye-line
to determine the roll angle and a frontal-face plane for yaw
and pitch.

The four landmarks of inner and outer eye corners are used
to build the eye-line. Firstly, the eye-line is projected into the



XY plane, where it can be expressed as a linear equation of
two variables y = mx + b. The roll angle is calculated as
ψ = tan−1 (m).

The remaining landmarks, except the nose tip, are used
to estimate a plane that will be a good approximation of
the frontal-face region (see Fig. 1). Let the normal vector to
this plane be n = [xn, yn, zn]. Due to the fact that angles
can be obtained by rotations about its principal axes, we can
compute the yaw and pitch angles as: φ = tan−1

(
xn/zn

)
,

θ = tan−1
(
yn/zn

)
.

2) Appearance estimate: It is based on regression over
the local appearance around landmark points. Specifically, for
each detected landmark x̂` we compute a local surface descrip-
tor d(x̂`) that will be the input to a multi-linear regressor A`

yielding an estimate for φ, θ and ψ. Thus, differently from the
geometric estimate, the appearance estimate requires a training
set to derive the regressors.

We use 3D Shape Contexts (3DSC) [20] as local descriptors,
slightly modified to increase their sensitivity to viewpoint and
robustness to noise. 3DSC are based on a spherical histogram
computed on a neighbourhood of the interest point (in our
case, landmark locations) and have been shown to perform
well as descriptors of the facial surface [21]. Similarly to
other popular descriptors 3D geometry [22], [23], [24], 3DSC
use the surface normal at the interest point to appropriately
orient the reference system of the local neighbourhood, aiming
for rotational invariance2. Because our objective is to identify
viewpoint, such normal-based orientation is not convenient,
hence we will orient the reference systems of all local neigh-
bourhoods based on the normal to the camera sensor. This
choice avoids also the computation of surface normals, which
are known to be especially sensitive to noise [5], [23].

Notice that, in principle, we will produce L different esti-
mates for each angle (i.e. one per landmark). However, because
of the potential presence of occlusions, it is not guaranteed that
all estimated landmarks will actually lie on the mesh surface.3

Indeed, when parts of the facial surface are missing, it is
possible that some landmarks ` ∈ G are estimated relatively
far from the mesh M, i.e. they are inferred in the position
where we would statistically expect them to be, despite no
surface has been captured there (Fig.3).

Therefore, we use the indicator function 1(‖x̂`−M‖ < ε)
to filter out the estimates of landmarks that are estimated off
the surface and produce our final appearance estimate as the
average of the remaining ones:

(φ, θ, ψ)T =

∑
k 1
(
‖x̂` −M‖ < ε

)
A`d(x̂`)∑

k 1
(
‖x̂` −M‖ < ε

) (6)

where the distance from x̂(`k) to M is computed as the
distance to the nearest mesh vertex:

‖x̂` −M‖ = min
vj∈M

‖x̂` − vj‖ (7)

2Such invariance, however, is only partially achieved in 3DSC since the
orientation of the surface normal still leaves one degree of freedom undefined
(the sphere’s azimuth [25])

3We consider that a landmark is on the surface when its distance to it is
relatively small as compared to the mesh resolution.

Fig. 3. Positions of the landmarks estimated automatically by SRILF in a head
scan showing large yaw rotation. Two views of the same scan are provided:
the original view (as seen from the camera) is shown to the left and a rotated
view (to simulate a frontal shot) is shown to the right. Landmarks lying on
the surface are indicated in blue color, while those off-the-surface (estimated
by inference) are displayed in red.

C. Dictionary-based pose estimation

As mentioned before, for some small percentage of scans
SRILF has difficulties to correctly locate the facial landmarks
and, thus, the approaches described in Section III-B are not
applicable to estimate the corresponding head pose. Typically,
these are especially challenging scans, with big rotations,
large parts of the head self-occluded and/or very poor quality.
These difficulties, together with the failure of a state-of-the-
art landmarker as SRILF, suggest the need for a landmark-free
approach to tackle these scans. Thus, we employ an alternative
dictionary-based strategy for the scenario where no explicit
vertex-landmarks correspondences are found.

Inspired by the success of Bag-of-Words approaches in
3D shape retrieval [26], we represent each scan as a set of
descriptors D = {d(x1), d(x2), ..., d(xN )} extracted vertices
xn = {xn, yn, zn} randomly sampled on the mesh M. Con-
cretely, we use again 3DSC descriptors with fixed orientation
coinciding with the camera axis (Section III-B) and a random
sampling over the mesh with density of 7mm−1.

Given the sets D obtained from all the training scans, we use
k-means clustering to learn a dictionary Z = {z1, z2, ..., zK}
of 3D descriptors, where each zk is a particular centroid and
K is the total number of clusters considered. Intuitively, these
clusters will represent different shapes typically appearing in
face scans (e.g. nose tip, cheeks, eyes corners, etc.). This
dictionary Z is then used to encode each 3D mesh as a vector
h ∈ RK representing the frequency of each cluster zk in the
scan. For this purpose, we employ a Soft-Assignment approach
[27], where each descriptor xn is encoded as:

hkn =
exp(−||d(xn)− zk||2)∑K
j=1 exp(−||d(xn)− zj ||2)

, (8)

and the final vector representation is computed using a sum-
pooling procedure as: h =

∑K
k=1 hk. Finally, vectors h for

all the training scans are used to train three different Least-
Squares linear regressors for yaw, pitch and roll angles.

IV. EXPERIMENTS

We used the recently published SASE 3D head-pose
database [13], to assess the performance of our approach.



The data in SASE has been acquired with Microsoft Kinect
2 camera and contains RGB and depth images in pairs. The
entire database includes 50 subjects (32 male and 18 female)
in the range of 7-35 years old, with more than 600 frames
per subject. For each person, a large sample of head poses are
included, with wide range of yaw, pitch and roll variations.

For the Head Pose Challenge [11] organized at the Interna-
tional Conference on Automatic Face and Gesture Recognition
(FG 2017), the SASE data has been divided in three sets:
Training (comprising 28 subjects with a total of ∼ 17K
images), Validation (12 subjects, ∼ 7K images) and Test (10
subjects, ∼ 6K images). Only the Training data was made
available to challenge participants in order to investigate the
performance of their algorithms prior to the final evaluation
phase. Therefore, we first present detailed results of our system
using only Training data (Section IV-A) and use them to
choose the parameters that will be used for Validation and
Test sets (Section IV-B). Notice that, although the SASE data
contains both RGB and depth images, we only used depth data
in order to comply with the participation requirements of the
Head Pose Challenge.

A. Training

We started by splitting the training data into two subsets:
Development and Pre-test. The Development set was com-
posed of 840 images, by randomly choosing 30 images from
each of the 28 training subjects. This set was used to train the
landmarking algorithm and the dictionary-based estimate. The
remaining images (∼ 16K) were used as a preliminary test-set
to asses system’s performance and validate system parameters.

As explained in Section III, our system combines three
different methods to estimate head pose: two of them are
based on landmarks (geometric and appearance estimates)
and the third one is dictionary-based. The three methods
were developed independently and each has its advantages
and shortcomings. Table I shows the results of each method
applied separately on the entire Pre-test set. We can see that,
as anticipated, landmark-based estimates are more accurate
than dictionary-based estimates. On the other hand, for about
9% of the scans it was not possible to detect landmarks and
only the dictionary-based estimates are available. Notice the
comparatively large errors of the estimates in these scans,
which confirm that these are especially challenging cases.

Within landmark-based methods, estimates based on appear-
ance were slightly more accurate than geometric ones. How-
ever, we note that i) the geometric-based estimate is training-
free while the appearance-based one requires a learning stage4;
ii) combination of both estimates (by averaging) produced
better results than each of them individually.

The dictionary-based approach was not as accurate as the
landmark-based ones, but it was able to produce estimates
in all cases. As explained in Section III-C, this method also
requires learning, which was performed on our development
set, fixing the number of clusters to K = 500.

4For the experiments reported in Table I, the appearance-based estimate
was tested in a 10-fold cross-validation setting.

TABLE I
AVERAGE POSE ESTIMATION ERRORS ON THE TRAINING PART OF THE

SASE DATABASE

Approach Pitch (◦) Yaw (◦) Roll (◦) % scans
Scans with landmarks successfully detected
Landmark-based
geometric 6.34 6.42 7.33 90.8%

Landmark-based
appearance 6.17 6.04 5.57 90.8%

Landmark-based
combined 5.50 5.44 5.28 90.8%

Dictionary-based 8.74 8.06 5.89 90.8%
Scans with landmarks not detected
Dictionary-based 14.74 14.10 9.83 9.2%
All scans
Dictionary-based 9.29 8.61 6.25 100%
Combination 6.33 6.10 5.46 100%

The last line of Table I shows the final results of the
system, obtained by combining the three methods. As indi-
cated in Fig.1, landmark-based estimates were preferred over
dictionary ones. However, if no landmarks were available or
if geometric and appearance landmark-based estimates did
not match, we used the dictionary approach. The rationale
behind checking landmark-based estimates for agreement is
that, if landmark are accurately located then both geometric
and appearance estimates should produce similar results. On
the other hand, if landmarks are located at incorrect positions,
the estimates will also be incorrect but are unlikely to coincide
among them, given the different nature of the estimators.

Therefore, given a head scan with geometric estimates
(φG, θG, ψG) and appearance estimates (φA, θA, ψA), the sys-
tem will use these estimates if and only if:

|φG − φA|+ |θG − θA|+ |ψG − ψA| < τ (9)

Otherwise, the dictionary-based approach is used. Fig. 4 shows
the variation of the estimation errors of the landmark- and
dictionary-based approaches for different values of τ . The
errors are displayed for each angle taking into account only
the scans for which landmark-based estimates failed to comply
with eq. (9). It can be seen that scans with larger differences
between geometric and appearance estimates have larger pose
estimation errors. Errors increase steadily ∀τ for landmark-
based estimates and partially for the dictionary-based approach
(approximately up to τ ≤ 50). The second observation from
Fig. 4 is that, as expected, for large differences between geo-
metric and appearance estimates the dictionary-based approach
is more accurate. For the experiments reported in this paper,
we have adopted a conservative value of τ = 50 where Fig.
4 shows lower errors of the dictionary-based approach for all
three estimated angles. As indicated by the black line in the
plot, this represents replacing the landmark-based estimates by
the dictionary ones in approximately 15% of the cases.

B. Validation and Test

Once we trained the necessary models and set the system
parameters as described in the previous section, we submitted
our estimates of head poses in the Validation and Test sets
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based on landmarks (solid lines) and dictionary (dashed lines).

TABLE II
AVERAGE POSE ESTIMATION ERRORS ON THE SASE DATABASE

Subset Pitch Yaw Roll Sum
Training 6.33 6.10 5.46 17.89
Validation 7.82 6.65 5.39 19.86
Test n/a n/a n/a 19.02

to the Head Pose Challenge. Table II summarizes our results,
with which we obtained the first place in the challenge. It can
be seen that the results at this stage were not too different from
those obtained in training, indicating that there was not much
over-fitting. Notice that, for the Test set, we can only provide
the overall score (sum of average errors for all angles) since
the ground truth for this part of the database was not made
available by the challenge organizers.

Table III shows additional details about the performance
of the proposed system in the validation and test sets. The
average processing time reported correspond to tests on an
Intel i7-770 processor at 3.4 GHz with 16 Gb or RAM. Most
of the implementation was done in Matlab and it has not been
optimized for speed. Full code of the system used to produce
the reported results is publicly available.5

C. Comparison to other methods

Table IV shows the results reported by most relevant previ-
ous works addressing head pose estimation based on 3D data.
Together with the estimation errors for each angle, we indicate
whether the corresponding methods use tracking, RGB and/or
depth data. Moreover, we show the specific database(s) used
for testing in each case. As explained in Section II, most
methods use temporal information to speed-up processing but
also to avoid the need for initialization at every frame. This
can considerably simplify the problem if sequences start from
near-to-frontal shots, as is the case in most datasets used for
head pose evaluation. However, this assumption do not need to

5https://github.com/DmytroDerkach/CMTech

TABLE III
DETAILED INFORMATION ABOUT THE PERFORMANCE OF THE PROPOSED

SYSTEM ON THE VALIDATION AND TEST SETS

Overall statistics
Total number of scans 13,885
Average processing time 8.42 s

Automatic landmarks
Successfully detected 91.1 %
Average detection time 5.77 s

Landmark-based pose estimates
Successfully computed 91.1 %
Agreement within τ = 50 86.8 %
Average processing time 6.08 s

Dictionary-based pose estimates
Computed for 13.2 %
Average processing time 3.29 s

be fulffiled in real-scenarios. Among the four methods listed
in Table IV that do not rely on tracking, only one exclusively
uses depth information (as our system) and the other three
methods use both depth and RGB data.

Comparisons with our work using results depicted in Table
IV are difficult and rather indirect considering the diversity of
datasets and experimental setups that were used in the cited
works. However, our results compares favorably to the best
performing methods in the literature only relying on depth
information. Moreover, performance of the proposed system is
comparable to some algorithms that also use tracking for pose
estimation. Finally, a detailed analysis of our results reveals
that our average estimation errors are strongly influenced by
the presence of outliers; e.g. our median absolute estimation
errors were approximately 3.5 degrees per angle, considerably
lower than the average absolute errors reported in Section IV.
Analysis of these outlier cases revealed that they were typically
scans with large rotation angles where the face was positioned
quite oblique to the camera axis and the sensor could not
capture it with sufficient quality.

V. CONCLUSIONS

In this work we present an approach for accurate head
pose estimation from a single depth frame of consumer RGB-
D cameras, such as Kinect 2. In contrast to most existing
approaches, we base our system in the detection of 3D facial
landmarks, whose positions are later used to derive geometry-
and patch-based pose estimators. A key aspect of the proposed
system is the use of state of the art landmark localization
with no need for initialization and tolerance to occlusions or
missing data. Our system is complemented with a secondary
pose estimator based purely on patches sampled randomly
on the head region to account for potential failures of the
landmark-based estimation.

We evaluated our system on the SASE database, which
consists of ∼ 30K frames from 50 subjects. We obtained
average pose estimation errors between 5 and 8 degrees per
angle, achieving the best performance in the FG2017 Head
Pose Estimation Challenge. Our experiments also confirmed
the initial hypothesis that the landmark-based estimates would



TABLE IV
AVERAGE ANGULAR ERRORS(IN DEGREES) FOR DIFFERENT EXISTING

HEAD POSE ESTIMATION ALGORITHMS

Method Errors Tracking Domain Data
φ θ ψ

Valle [14] 12.6 - - No RGB+
depth

AFLW/
AFW

Wang [15] 8.8 8.5 7.4 No RGB+
depth

Biwi
Kinect

Li [4] 8 12 4 No depth FRGC
v2.0

Papazov [5] 2.5 1.8 2.9 No RGB+
depth

Biwi
Kinect3.0 2.5 3.8 Yes

Meyer [9] 2.1 2.1 2.4 Yes depth Biwi
Kinect

2.9 2.3 - Yes depth ETH
Padeleris

[16] 2.4 3.0 2.8 Yes depth Biwi
Kinect

Martin [17] 2.6 2.5 3.6 Yes depth Own

Baltrusaitis
[10]

6.3 5.1 11.3 Yes RGB+
depth

Biwi
Kinect

3.0 3.8 2.1 Yes BU

2.9 3.1 3.2 Yes ICT-
3DHP

Tulyakov [7] 4.7 7.6 5.3 Yes RGB+
depth

Dali
3DHP

Fanelli [8] 8.9 8.5 7.9 Yes depth Biwi
Kinect

be more accurate than correspondence-free approaches, such
as the dictionary-based one that was adopted. Landmark-based
estimates were successfully produced for ∼ 90% of cases
and the remaining ones were tackled by the dictionary-based
approach. Our results compare well with those reported in the
related literature, especially considering the added difficulty
of not using tracking and RGB data to produce our estimates.
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