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Abstract— We investigate the problem of facial expression
recognition using 3D data. Building from one of the most
successful frameworks for facial analysis using exclusively 3D
geometry, we extend the analysis from a curve-based represen-
tation into a spectral representation, which allows a complete
description of the underlying surface that can be further tuned
to the desired level of detail. Spectral representations are based
on the decomposition of the geometry in its spatial frequency
components, much like a Fourier transform, which are related
to intrinsic characteristics of the surface. In this work, we
propose the use of Graph Laplacian Features (GLF), which
results from the projection of local surface patches into a
common basis obtained from the Graph Laplacian eigenspace.
We test the proposed approach in the BU-3DFE database in
terms of expressions and Action Units recognition. Our results
confirm that the proposed GLF produces consistently higher
recognition rates than the curves-based approach, thanks to
a more complete description of the surface, while requiring a
lower computational complexity. We also show that the GLF
outperform the most popular alternative approach for spectral
representation, Shape-DNA, which is based on the Laplace
Beltrami Operator and cannot provide a stable basis that
guarantee that the extracted signatures for the different patches
are directly comparable.

I. INTRODUCTION

Human face plays an important role while expressing emo-
tions such as happiness, satisfaction, surprise, fear, sadness or
disgust. While there is consensus about the need to integrate
multi-modal information for a complete understanding of
human emotions, facial expressions are considered one of the
most relevant channels for humans to regulate interactions
both with the environment and with other persons [1].

During the past two decades, the problem of facial ex-
pression recognition has become very relevant. The growing
interest in improving the interaction and cooperation between
people and computers makes it necessary that automatic
systems are able to react to a user and his emotions, as it
takes place in natural human intercourse. Many applications
such as virtual reality, video-conferencing, user profiling and
customer satisfaction studies for broadcast and web services,
require efficient facial expression recognition in order to
achieve the desired results [2], [3]. Therefore, the impact
of facial expression recognition on the above-mentioned
application areas is constantly growing.

Methods for facial expression recognition are generally
based on two possible imaging domains: 2D and 3D. Previ-
ous studies have focused primarily on the 2D domain (texture
information) [4] due to the prevalence of data. With the
rapid development of 3D imaging and scanning technologies,
it becomes more and more popular using 3D face scans.
Compared with 2D face images, 3D face scans contain de-
tailed geometric shape information of facial surfaces, which

remove the problems of illumination and pose variations that
are inherent to the 2D modality. Thus, 3D-shape analysis has
attracted increasing attention [5].

The availability of 3D information is not always fully
exploited and, in many cases, 3D information is analyzed
by directly applying 2D techniques to limited depth rep-
resentation. This is typically done by using depth maps
(2.5D representations), where the depth information is treated
analogously to a gray-scale image and the 3D information
is simply extracted by computing popular 2D texture de-
scriptors such as LBPs [6], [7], [8] or Gabor filters [9],
[10], [11]. Following a similar strategy, Zeng et al. [12]
conformally mapped the 3D facial surface to a 2D unit disk
and then considered it as a 2D image. More recently, deep
convolutional neural networks has been explored in order to
generate deep features [13] from this 2.5D representation.

However, in order to take full advantage of depth infor-
mation we need approaches that are truly 3D. A notable
approach in this direction, from Klassen et al., is based
on the representation of surfaces with a finite number of
level curves [14]. They showed that curves can be used to
represent surface regions, being able to capture quite subtle
deformations. Thus, 3D shape analysis can be performed
by comparisons of corresponding level curves. It should be
noted, however, that such comparison is not trivial, given
that distances between 3D level curves should be computed
based on the geodesic paths of their underlying manifold.
An important step forward in this direction was presented
by Srivastava et al. [15], who introduced a square-root
velocity representation for analyzing curves in Euclidean
spaces under a Riemannian metric. In particular, they com-
puted geodesic paths between curves under this metric to
obtain deformations between closed curves. Samir et al. [16]
applied this curves-based approach for the analysis of facial
surfaces.They represented a surface as an indexed collection
of closed curves. These curves were extracted according to
to their Euclidean distance from the tip of the nose, which
is sensitive to deformations and, thus, can better capture
differences related to variant expressions. Then, authors
studied curves’ differential geometry and endowed it with a
Riemannian metric. In order to quantify differences between
any two facial surfaces, the length of a geodesic was used. A
similar framework was used in [17], [18] for analyzing 3D
faces, with the goal of comparing, matching and averaging
faces, with the difference that surfaces were represented by
radial curves outflowing from the nose tip. Maalej et al. [19],
based on an indexed collection of closed curves, emphasized
the importance of using local regions instead of the entire
face and proposed a local geometric analysis of the surface.



They introduced a facial surfaces representation based on sets
of level curves around landmarks. In their work, they used
70 landmarks and then extracted collections of closed curves
using Euclidean distance. Thereby, 70 patches centered on
the considered points represented the facial surface, where
each patch consisted of an indexed collection of 3D closed
curves. Further, they applied a Riemannian framework to
derive 3D shape analysis and quantify similarity between
corresponding patches on different 3D facial scans.

Despite the success of the level-curves framework, it could
be argued that it is an incomplete representation of the 3D
data, since it only captures part of the underlying surface,
which is actually sampled by means of a finite number
of curves. Spectral representations are based on the de-
composition of the geometry in its (fundamental) frequency
components, which are related to intrinsic characteristics
of the surface, and correspond to the eigenvectors of the
Laplace Beltrami Operator (LBO). The spectrum of the LBO
is an isometric invariant, and it has been shown to be a
powerful descriptor as a signature for (non-rigid) 3D shape
matching and classification [20], [21]. The most popular
of such descriptors was proposed by Reuter et al. [21],
by taking the eigenvalues (i.e. spectrum) of its Laplace-
Beltrami operator. Because such spectrum captures intrinsic
shape information they called the method Shape-DNA. It
was shown that this approach can be used (like DNA-test)
to identify 3D objects or to detect similarities in practical
applications. Several works used the Shape-DNA to identify
objects for the purpose of copyright protection, but, to the
best of our knowledge, it has not been applied for facial
expression analysis.

Contributions

In this paper, we explore the use of spectral methods as
local shape descriptors for 3D facial expression recognition.
We show that the application of Shape-DNA is not the
best way to deal with local face patches and that a fixed-
graph basis, which we refer to as Graph Laplacian Features
(GLF), provides superior results. This is theoretically sound
given the impossibility to ensure a fixed ordering of the
spectral components under the Shape-DNA approach [22].
Compared to the curves-based framework, the proposed
method constitutes a generalization to a full representation
of the surface patches resulting in higher accuracy and
reduced computational complexity. We perform experiments
over the BU-3DFE database and show that the proposed
GLF approach consistently outperforms the curves-based and
Shape-DNA alternatives, both in terms of expression and
Action Unit recognition.

II. SPECTRAL SHAPE ANALYSIS

Spectral shape analysis relies on the decomposition of
the surface geometry into its spatial frequency components
(spectrum). Such representation allows to analyse the surface
by examining the eigenvalues, eigenvectors or eigenspace
projections of these fundamental frequencies.

One of the advantages of these methods is that they
are invariant with respect to isometry, which means that
these descriptors do not change with different isometric
embeddings of the shape. In addition, their advantage is that
they can be applied well to deformable objects. Spectral
methods have been applied to solve a variety of problems
including mesh compression, correspondence, smoothing,
watermarking, segmentation, surface reconstruction etc. [23],
[24], [25].

In our work, we use the spectrum based on Laplace
operator for facial expression recognition. The Laplacians
are the most commonly used operators for spectral mesh
processing. As Chung stated in her book [26], results from
spectral theory suggest that the Laplacian eigenvalues are
tightly related to almost all major graph invariants. Thus,
if data models the structures of a shape, either topology
or geometry, then it is expected that its set of eigenvalues
provides an appropriate characterization of the shape. The
eigenvalues serve as compact global shape descriptor [25].

Several Laplacian operators have been proposed in the
literature to compute the mesh spectrum. In this work we
are especially interested in the two most popular ones:

1) Graph Laplacian, related to operators that have been
widely studied in graph theory [26]. Despite this
operator is based solely upon topological information,
its eigenfunctions (i.e. eigenvectors) generally have a
remarkable conformity to the mesh geometry [27]. On
the other hand, the eigenfunctions of this operator
are sensitive to aspects such as mesh resolution or
triangulation.

2) Discretizations of the Laplace-Beltrami operator from
Riemannian geometry [28], [29], which try to make
basis dependant only on the underlying geometry and
not its specific representation. This is the type of
operator used in the Shape-DNA approach.

A. Graph Laplacian

Mesh (graph) Laplacian operators are linear operators that
act on functions defined on the mesh and they depend purely
on the mesh points (vertices) and their connectivity (e.g.
triangulation). Thus, if mesh M has n vertices, a mesh
Laplacian will be described by a n× n matrix L.

Given a mesh M with vertices V and edges E, M =
(V,E), the graph Laplacian L = L(M) is defined as

Lij =

 −1 if (i, j) ∈ E
di if i = j
0 otherwise

(1)

where di is the degree or valence of vertex i.
Since this operator is determined purely by the connec-

tivity of the mesh, it does not explicitly encode geometric
information. However, as shown in the seminal work from
Taubin [30], eigen-decomposition of the graph Laplacian
produces an orthogonal basis whose components relate to
spatial frequencies, much like a Fourier Transform. Projec-
tions of a mesh into the eigenspace of Laplacian operators
have been proposed [31], [32] and used to derive shape



Fig. 1. (a) 3D annotated facial shape model (68 landmarks); (b) closed curves extracted around the landmarks; (c) example of 8 level curves; (d) the
mesh patche.

descriptors [33]. In face, eigenvectors are most frequently
used to derive a spectral embedding of the input data (e.g. the
mesh shape), since the spectral domain is more convenient to
operate as it is low-dimensional and invariant to isometries
while it still retains as much information about the input data
as possible.

B. Shape-DNA

In Riemannian geometry, the Laplace operator can be
generalized to operate on functions defined on a surface.
In this case, the Laplace-Beltrami operator is of particular
interest in geometry processing.

Ovsjanikov in [34] showed that the Laplace-Beltrami
operator can be defined entirely in terms of the metric
tensor on the manifold independently of the parametrization.
Compared to the graph Laplacian, the Laplace-Beltrami
operator does not operate on any mesh vertices, but rather
on the underlying manifold itself. It depends continuously
on the shape of the surface [35].

The Laplace operator based on the cotan formula repre-
sents the most popular discrete approximation to the Laplace-
Beltrami operator currently used for geometry processing.
This operator can be presented as a product of a diagonal
and symmetric matrix L = B−1S. Where B−1 is a diagonal
matrix whose diagonal entries are Voronoi areas [36] for all
vertices and S is a symmetric matrix defined [37]:

Sij =


−wij if (i, j) ∈ E∑
k∈N(i) wik if i = j

0 otherwise
(2)

where wij = (cotαij + cotβij), αij and βij are the angles
opposite if the edge (i, j) (Fig. 2). N(i) is a set of vertices
that are adjacent to vertixe i.

A significant amount of geometric and topological infor-
mation is known to be contained in the spectrum. Since
the spectrum (i.e. the eigenvalues) of the LaplaceBeltrami
operator contains intrinsic shape information Reuter et al
proposed to use them as shape signature or Shape-DNA
[21]. Shape-DNA can be used to identify shapes and detect
similarities.

In order to extract appropriate eigenvalues, matrix L
should be symmetric. The main advantage offered by sym-

metric matrices is that they possess real eigenvalues whose
eigenvectors form an orthogonal basis [38]. Although L itself
is not symmetric in general, it is similar to the symmetric
matrix O = B−1/2SB−1/2 since

L = B−1S = B−1/2B−1/2SB−1/2B1/2 = B−1/2OB1/2

Thus, L and O have the same real eigenvalues [25]. Further,
these eigenvalues can be compared for shape identification.

III. SPECTRAL REPRESENTATION OF FACIAL
PATCHES

In order to explore the use of spectral methods as local
shape descriptors, we represented a surface based on surface
patches. For this purpose, we choose to consider N reference
points (landmarks) {rl}1≤l≤N (Fig. 1(a)) and, following
[19], their associated sets of level curves {clλ}λmin≤λ≤λmax

(Fig. 1(b)). These curves were extracted over the surface
S centered at the considered landmark points, where λ is
the distance between the reference point rl and the point
belonging to the curve clλ, λmin and λmax stand for the
minimum and maximum values taken by λ. The computation
of the curves was performed using an Euclidean distance
function:

clλ = {p ∈ S|‖rl − p‖ = λ} ⊂ S, λ ∈ [λmin, λmax] (3)

In that way, clλ is a curve, which consists of a collection
of points {p} located at an equal distance λ from point rl.
Accordingly, each facial surface is represented by patches
that consist of sets of level curves around landmarks.

Once the patches are extracted, we aim to study their
shape. Because we want to calculate the mesh spectra for the

Fig. 2. 1-ring neighbors and angles opposite to an edge.



Fig. 3. Schematic representation of the proposed approach. For each facial landmark, a surface patch is extracted to describe its local geometry. Each
patch is projected into a common eigenspace to obtain a set of spectral coefficients that constitute our features. The eigenspace is computed off-line as the
spectrum of the Graph Laplacian operator which depends exclusively on the connectivity of vertices and is therefore common for all patches. The spectral
coefficients can be interpreted as loadings that weight the contribution of the spectral components. In the figure we display the coefficients of the first 5
spectral components, as well as the spatial patterns produced by their corresponding eigenvectors.

patches, we need to convert level curves to surface patches.
Notice that, conceptually, we may directly extract the patches
with no need to first extract the curves, but proceeding this
way facilitates comparison to [19] and, as we explain below,
allows for using directly the graph Laplacian instead of the
Laplace-Beltrami operator. To generate the mesh patches we
re-sample the curves uniformly (as done in [19]) and define
a unique connectivity between them, which will be shared
by all patches (Fig. 1(d)).

After these pre-processing steps, we extract spectral fea-
tures for facial expression analysis. We propose to do so us-
ing the Graph Laplacian, since this is the more theoretically
sound approach under our settings. We also compare the re-
sults obtained by Shape-DNA, arguably the most widespread
method to extract spectral features from 3D meshes. Specif-
ically, spectral features are extracted as follows:

• Graph Laplacian: Whereas graph Laplacian depends
only on the connectivity between vertices, we calculated
matrix L using formula (1) only once. Eigenvalues and
eigenvectors were obtained from this matrix. Because
we generated all our mesh patches with the same order
of connectivity, the set of eigenvectors constitutes a
common basis to represent the spatial spectrum of
all patches. Therefore, we used these eigenvectors to
project mesh coordinates into the common eigenspace.
These projections constitute our feature vectors, and are
directly comparable between patches.

• Shape-DNA: The second type of features was obtained
using the Laplace-Beltrami operator (2). This operator
was calculated separately on each mesh-patch, because
it depends not only on the connectivity but also on the
location of the vertices. Thus, the eigen-decomposition
of each patch produces a different eigenspace, which is
tuned to the geometry of that specific patch. Projections
into the eigenspace are therefore no longer comparable,

but the eigenvalues resulting from each decomposition
have been proven discriminative [23], hence we use
them as feature vectors.

To drive the classification experiments, we employed
two different classifiers — support vector machines (SVM)
invoking the LIBSVM software [39] and Fisher’s Linear
Discriminant Analysis (FLDA) [40]. A schematic diagram
of the proposed framework is presented in Fig. 3.

IV. EXPERIMENTS

In the following section, we provide the details of our
experiments on feature extraction with the proposed spectral
analysis for facial expression recognition.

A. Experimental setting

In order to evaluate the proposed local shape spectrum
analysis, we use the BU-3DFE database [41], which is one of
the most widely used corpora for facial expression analysis in
3D. This database consist of 3D face scans of 100 subjects
with different facial expressions. There are also variations
in race, gender and age. Scans are annotated according to
the six prototypical facial expressions (anger, disgust, fear,
happiness, sadness and surprise) at four different intensity
levels. For our experiments, we have used the scans from
all 100 subjects at the two highest intensity levels. Thus,
our dataset consists of 1200 3D face scans, namely two
intensity levels for each of the six facial expressions from
100 subjects.

Accompanying each facial scan there are 83 manually
labeled landmarks. From these, 15 landmarks correspond to
the silhouette contour and have arguably little validity in a 3D
setting, hence we considered the subset of N = 68 landmarks
laying within the face area. All facial scans were represented
by 68 patches {clλ}λmin≤λ≤λmax

, Where, each patch consist
of 15 level curves (Fig. 1(c)) (λmin = 5, λmax = 20) and



TABLE I
AVERAGE ACCURACY OF THE THREE METHODS USING TWO CLASSIFIERS

Curves Graph Laplacian Shape-DNA
FLDA 77.53% 81% 73.5%
SVM 78.2% 81.5% 73.62%

TABLE II
AVERAGE CONFUSION MATRIX OF GRAPH LAPLACIAN USING 50

EIGENVALUES AND AN SVM CLASSIFIER

% AN DI FE HA SA SU
AN 85.58 4.14 1.26 0.5 8.52 0
DI 7.5 75.31 8.76 3.01 0.9 4.52
FE 5.58 8.6 65.12 12.55 2.59 5.56
HA 0 2.16 6.87 89.5 0 0.9
SA 14.5 0.76 7.46 0 77.2 0
SU 0 1.72 3.53 1.2 0 93.5

each curve is a collection of points situated at an equal
distance from the considered landmarks.

The dataset was arbitrarily divided into ten identity-
disjoint sets; each of these (composed on 120 samples) was
tested with models trained from the remaining nine sets
(1080 samples). Thus, the recognition rates are obtained
by averaging the results over the 10 sets (10-fold cross-
validation).

B. Results on Expression Recognition

Our first experiment consists on a direct comparison of the
proposed spectral features (based on GLF) with respect to the
curves-framework and with respect to Shape-DNA, which
constitute the straight-forward spectral alternative. This was
done in the context of expression recognitions targeting
the six basic emotions. (anger (AN), disgust (DI), fear
(FE), happiness (HA), sadness (SA), surprise (SU)). Table I
summarizes the average accuracy obtained by each approach.
It can be seen that the spectral features based on the Graph
Laplacian outperform the curves-based approach, which sug-
gest that they can capture a more complete information about
the facial patches. It is also interesting to see that Shape-
DNA features obtain the lowest accuracy among the three
methods. This confirms the theoretical limitations already
highlighted with respect to the direct application of Shape-
DNA to surface patches: given two shapes to compare under
a spectral representation, small differences between them
can modify the eigen-decomposition to the extent that the
eigenvalues change their relative order producing a swapping
of the extracted basis [22]. Such swaps make the direct
comparison of eigenvalues used in Shape-DNA conceptually
incorrect. Fixing this would require matching algorithms to
appropriately re-order the resulting eigenvalues. Our GLF do
not suffer from this issue as they result from a projection into
a common basis, which only depends on the connectivity of
the patches.

To put our results in a wider context, we can also compare
them to other methods reporting expression recognition rates

TABLE III
AVERAGE CONFUSION MATRIX OF SHAPE-DNA USING 50 EIGENVALUES

AND AN SVM CLASSIFIER

% AN DI FE HA SA SU
AN 77.21 5.87 2.71 1.21 12.98 0
DI 7.45 75.53 7.98 3.87 1.52 3.61
FE 7.23 9.82 52.53 15.46 9.56 5.37
HA 2.1 3.45 12.5 80.49 0 1.46
SA 19.76 3.51 6.32 0.31 69.51 0.57
SU 0.49 1.52 10.23 1.54 0.49 85.74

TABLE IV
AVERAGE CONFUSION MATRIX OF APPROACH BASED ON ”DISTANCES

BETWEEN CURVES ” USING AN SVM CLASSIFIER

% AN DI FE HA SA SU
AN 78.96 6.08 3.83 0.55 10.56 0
DI 5.49 76.14 5.09 4.42 2.87 5.97
FE 3.92 7.08 63.45 13.24 6.12 6.17
HA 1.11 2.78 9.45 86.65 0 0
SA 12.26 0.58 8.28 0 78.86 0
SU 0 2.78 8.86 1.08 0.55 86.71

on the BU3DFE database. As detailed in [12], only methods
whose experimental settings consider the whole set of 100
subjects are fairly comparable. Among these, expression
recognition rates vary between 68.2% [12] and 82.7% [42],
while our average recognition rates reach 81.5%. Notice
that in our case we use a single type of feature (GLF),
while most other works achieving high recognition rates use
combinations of multiple features.

To provide a more extensive review of our results, Tables
II, III and IV show the average confusion matrices for each
of the approaches using SVM classifier. It can be seen
that among the six basic expressions surprise, happiness
and anger were recognized the best. In contrast, fear and
disgust were the most difficult expressions to predict. We also
observe that GLF consistently outperform both the curve-
based and Shape-DNA approaches for most expressions, with
the only major exception being Disgust, where it performs
similarly but slightly worse than the competing alternatives.

An important factor when using spectral decomposition
methods is the number of considered components. All results
reported above correspond to the first 50 components (eigen-
values in the case of Shape-DNA, projections in the eigen-
space in the case of GLF). We also repeated the expression
recognition experiments for different numbers of components
and found the performance of both GLF and Shape-DNA to
be relatively as long as at least 10 components were used (see
Table V). Tests extended only up to 200 components, since
increasing the components implies also more computational
load while not bringing improvements in accuracy.

C. Action Unit Estimation

Since our approach is based on the aggregation of local-
ized descriptors of the facial surface, it would make sense
that it can also be applied to the estimation of Action Units



TABLE V
AVERAGE ACCURACY OF FACIAL EXPRESSION RECOGNITION UNDER DIFFERENT CLASSIFIERS FOR DIFFERENT NUMBERS OF EIGENVALUES

Features Graph Laplacian Shape-DNA
Eigenvalues 200 100 50 30 10 200 100 50 30 10

FLDA 80.25% 79.92% 81% 80.25% 79.42% 71.17% 71.25% 73.5% 72.83% 71.08%
SVM 80.3% 80% 81.5% 79.5% 80.83% 71.2% 71.33% 73.62% 72.9% 71%

(AU). AUs are designed to capture any anatomically feasible
facial deformation [43], thereby combinations of AUs can be
used to describe any of the six basic expressions [44], as well
as any other anatomically feasible facial expression. Each of
the expressions in the BU-3DFE database was manually an-
notated with corresponding sets of AUs by two coders1. The
resulting annotations were checked for consistency of the
obtained AU frequencies per expression and co-occurrences
of AUs with [45], [46], [47]. Then, experiments on AUs
recognition were performed under the same conditions as
the expressions recognition tests.

Table VI shows the weighted average F1-score for each
AU (weighted proportionally to the number of samples per
AU). One common characteristic of all the approaches is
that they all recognized AU25, AU26 better that any other.
Also, analysing the table, we can see that detection of AU1,
AU2, AU4, AU5 and AU12 can be said reliable. The worst
detected AU was AU15.

When comparing among features, our results show the
same tendency observed in the expression recognition exper-
iments. The best performance was obtained by GLF, which
clearly outperformed Shape-DNA and was also slightly bet-
ter than the approach based on geodesic distance between
curves. Regarding the latter, while the average recognition
accuracy of GLF and curves were rather similar, it should
be noted that GLF consistently outperformed curves in 15
out of the 17 tested AUs.

V. CONCLUSIONS

In this work, we extend the analysis of 3D geometry from
a curve-based representation into a spectral representation.
This representation allows to build a complete description of
the underlying surface that can be further tuned to the desired
level of detail. We propose the use of Graph Laplacian
Features (GLF), which result from the projection of local
surface patches into a common basis obtained from the Graph
Laplacian eigenspace, much like a Fourier transform into the
spatial frequency bassis of the surface patches. Further, we
compare our approach with two others approaches. The first
one is the curves-based framework and the second one is
the straight-forward alternative for spectral representation,
Shape-DNA, which is based on the Laplace Beltrami Opera-
tor. We show that the straight-forward application of Shape-
DNA is not the best way to deal with local face patches, since
it cannot provide a stable basis to guarantee that the extracted
signatures for the different patches are directly comparable.

We tested the proposed approach in the BU-3DFE
database in terms of expressions and Action Units recog-

1Available at http://fsukno.atspace.eu/Research.htm#FG2017a

TABLE VI
AVERAGE F1-SCORE RECOGNITION RESULTS OF AUS USING 50

EIGENVALUES

AU # Samples Curves Graph Laplacian Shape-DNA
1 333 0.74 0.75 0.73
2 302 0.77 0.78 0.73
4 423 0.77 0.79 0.74
5 304 0.76 0.80 0.71
6 68 0.42 0.46 0.45
7 370 0.69 0.73 0.63
9 99 0.55 0.56 0.47

10 136 0.64 0.67 0.57
12 177 0.74 0.76 0.70
15 69 0.37 0.34 0.30
16 122 0.50 0.52 0.39
17 130 0.48 0.50 0.42
20 84 0.28 0.3 0.25
23 134 0.42 0.50 0.38
24 125 0.57 0.61 0.62
25 709 0.94 0.94 0.92
26 230 0.85 0.88 0.86

Avrg Total: 3815 0.72 0.74 0.69

nition. Our results show that the proposed GLF consistently
outperform the curves-based and Shape-DNA alternatives,
both in terms of expression recognition and Action Unit
recognition. Moreover, the recognition rates of shape-DNA
are even lower than the curves-based framework, as predicted
by the theory: in spite of upgrading the curves-based repre-
sentation to a full-surface description, similarly to GLF, the
instabilities of the bases extracted by Shape-DNA result in
a decreased performance.

Interestingly, the accuracy improvement brought by GLF
is obtained also at a lower computational cost. Considering
the extraction of patches as a common step between the three
compared approaches, the curve-based framework requires
a costly elastic deformation between corresponding curves
(e.g. based on splines) and Shape-DNA requires computing
the eigen-decomposition of each new patch to be analyzed.
In contrast, GLF only require the projection of the patch
geometry into the Graph Laplacian eigenspace, which is
common to all patches and can thus be pre-computed off-
line.
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