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Abstract

Head pose estimation is a challenging computer vision
problem with important applications in different scenarios
such as human-computer interaction or face recognition. In
this paper, we present an algorithm for 3D head pose esti-
mation using only depth information from Kinect sensors. A
key feature of the proposed approach is that it allows mod-
eling the underlying 3D manifold that results from the com-
bination of pitch, yaw and roll variations. To do so, we
use tensor decomposition to generate separate subspaces
for each variation factor and show that each of them has a
clear structure that can be modeled with cosine functions
from a unique shared parameter per angle. Such represen-
tation provides a deep understanding of data behavior and
angle estimations can be performed by optimizing combi-
nation of these cosine functions. We evaluate our approach
on two publicly available databases, and achieve top state-
of-the-art performance.

1. Introduction

Head pose estimation is a relevant problem for several
computer vision applications, including human-computer
interaction, video conferencing, face recognition and facial
motion analysis [7]. Head pose estimation has traditionally
been performed on 2D images, but recent advances in 3D
acquisition systems have led to a growing interest in meth-
ods that operate on 3D data [28]. These methods are less
sensitive to changes in illumination and viewpoint than 2D
image-based approaches, which makes them more accurate
and robust. Therefore, in this work we focus on head pose
estimation from 3D data.

The goal of head pose estimation is to predict the rela-
tive orientation between the camera and a 3D mesh of the
target head. This orientation is usually represented by three
angles: rotation around vertical axis (yaw angle), around
lateral axis (pitch angle), and around longitudinal axis (roll

angle). Despite the fact that standard features used to rep-
resent 3D meshes lie in high-dimensional spaces, a key ob-
servation to solve this problem is that the aforementioned
angles define a lower-dimensional manifold with only 3 de-
grees of freedom. This fact makes tensor decomposition
and manifold learning appealing frameworks for the esti-
mation of the orientation parameters. In particular, factor-
ization methods such as multi-linear decomposition [32],
are able to separate the variations produced by the different
factors (i.e. angles) into separate subspaces, thus obtaining
specific parametrizations for each of them. On the other
hand, manifold learning [34] can be used to find the low-
dimensional manifold structure defined by the orientation
angles.

In this context, previous works have attempted to use
the described frameworks for head pose estimation. Con-
cretely, methods such as Isomap [27] or Local Linear Em-
bedding [14] have been explored in order to learn the un-
derlying manifold structure defined by the orientation pa-
rameters. Even though the cited methods are able to learn
generic low-dimensional data representations, the resulting
manifold is only defined implicitly and, therefore, it is dif-
ficult to introduce specific constraints to model the inherent
structure defined by pose changes.

In order to address this limitation, we propose a novel
approach to learn the manifold defined by 3D rotations. In
particular, our method is able to explicitly model its under-
lying structure with an analytic form which takes into ac-
count the specific constraints imposed by orientation varia-
tions. For this purpose, we use multi-linear decomposition
to split the pose variation factors (i.e. yaw, pitch and roll)
and obtain a set of subspaces whose coefficients are gov-
erned by an unique parameter. These coefficients define a
continuous curve in each of the sub-spaces that corresponds
to the head pose variation along one of the rotation angles.
We further show that these curves can be modeled in terms
of trigonometric functions, which are indeed the bases to
explain rotation effects. Thus, we introduce a minimization
framework for pose estimation based on tensor decomposi-



tion constrained by trigonometric functions so that the so-
lutions obtained are always compatible with the underlying
manifold.

We start by studying a motivating example using 2D im-
ages that capture out-of-plane rotations of simple objects
along the vertical axis. Then, we formalize our minimiza-
tion framework generalizing it to 3D rotations in any of the
three axes and demonstrate its usefulness by applying it to
head pose estimation. Our experiments on the SASE and
BIWI databases [20, 12], two large and publicly available
3D face corpora, show that the proposed framework can
achieve state of the art performance for head-pose estima-
tion.

The rest of the paper is organized as follows. Section
2 introduces a brief review of the existing approaches for
head pose estimation. in Section 3 we provide the required
background on tensor theory and Section 4 details the pro-
posed manifold modeling framework for head pose estima-
tion. The experimental setups and results are covered in
Section 5. Section 6 concludes the paper.

2. Related work

2.1. Manifold-based methods

Many methods have considered the underlying manifold
structure of head pose variations [34]. The main idea behind
these methods is that, regardless of the dimensionality of
the input features, there should be at most 3 degrees of free-
dom for head pose variation, thus defining a 3D manifold
[27]. However, in general, this manifold is embedded non-
linearly in the ambient space defined by the features, which
has led researchers to explore non-linear manifold learning
methods such as Locally Linear Embedding [14], Isomap
[27], Synchronized Submanifold Embedding [38], Homeo-
morphic Manifold Analysis [26], Neighborhood Preserving
Embedding or Locality Preserving Projection [4] for head
pose estimation from 2D images.

An interesting possibility to enhance the embedding re-
sults is the use of head pose labels. For example, Bala-
subramanian et al. [2] present a Biased Manifold Embed-
ding (BME) framework in which the distance metric be-
tween data points is modified so that heads under similar
poses are brought closer to each other than they would be
under the unbiased (unsupervised) case. Similarly, Wang
and Song [35] consider head-pose information to constrain
the distances between data points and present a regression
variant of Fisher Discriminant Analysis (FDA), which they
call supervised neighborhood-based FDA. An alternative
approach is followed by Benabdelkader [4], who firstly ap-
ply unsupervised manifold learning methods and then em-
ploy the head pose information to train regressors in the re-
sulting low-dimensional manifolds.

Liu et al. [18] argue that a single manifold is not enough

for head pose estimation and that appearance variations
such as changes in identity, scale and illumination make
it necessary the use of multiple different manifolds to
model pose parameters. Thus, authors presented a cluster-
ing method to construct multiple manifolds, each of which
characterizes the underlying subspace of some subjects.
Peng et al. [26] also learn multiple manifolds; they use
Homeomorphic Manifold Analysis to build a separate man-
ifold for each subject and learn non-linear mappings to re-
late each subject-manifold with a common pose-manifold
whose topology is predefined as a unit circle or sphere (for
addressing rotations about one or two axes, respectively).

The most similar work to ours is probably the one from
Takallou and Kasaei. [31], who learn a non-linear tensor
model based on multi-linear decomposition for head pose
estimation from 2D images. They build a three-way ten-
sor to account for identity, pose and pixels information,
targeting only yaw rotations. During training, they find
individual-dependent mappings between each training pose
and a unified pose manifold based on tensor decomposi-
tion. At test time, each query image is projected into pose
and identity subspaces, which results in as many pose co-
efficients as identities in the training set. The final pose
estimate is obtained by validating the available pose coeffi-
cients in terms of compliance with the unified pose manifold
(e.g. inversely to the distance to training samples).

We see that, in contrast to our work, all of the above
methods use 2D images and most of them do not target ro-
tations about the three spacial axes. Moreover, none of them
provides an analytic formulation for the pose manifolds.

2.2. 3D methods review

Head pose estimation has traditionally been performed
on 2D images, but recent advances in 3D acquisition sys-
tems have led to a growing interest in methods that operate
on 3D data. These methods are less sensitive to changes
in illumination and viewpoint than 2D image-based ap-
proaches, which makes them more accurate and robust.

An important distinction between different approaches is
the type of input data that is used. Firstly, very few methods
use only depth information, typically relying on curvatures,
symmetry planes or most salient facial landmarks, such as
the nose tip [6, 30, 16].

In contrast, a majority of head pose estimation algo-
rithms working in 3D, use also RGB data as additional
source of information, facilitating aspects such as face de-
tection and estimation of fiducial points. In this category we
find approaches based on the fusion of 2D and 3D features
(e.g. SIFT, HOG) to train regressors [33], template fitting,
such as 3D Morphable Models [36], or depth features ini-
tialized by 2D face detection [25].

Finally, it is also common to take advantage of temporal
information for tracking the head pose across sequences of



frames, which considerably improves performance. How-
ever, tracking-based algorithms often benefit from the fact
that test sequences usually start with nearly frontal head
poses and their accuracy to detect initial head poses other
than frontal is not clear. Thus, when comparing our results,
we will focus on methods that provide estimation results on
a per-frame bases, without tracking.

Interestingly, we see that previous methods targeting
head pose estimation from 3D data have not taken advan-
tage of the underlying manifold structure of 3D head rota-
tions.

3. Tensor decomposition
In this section, we give a review of tensor decomposi-

tion methods, especially focusing on the higher order SVD
(HOSVD) [5, 9, 15].

In many scenarios, data can be naturally represented as
multidimensional arrays and, therefore, it is beneficial to
take into account its inherent structure in order to analyze
it. For this purpose, the use of tensors is a natural solution.
In particular, a tensor is also known as a n-way array or a
n-mode matrix. Vectors and matrices can be considered as
first and second order tensors, respectively.

The starting point of our derivation of multilinear SVD
will be to remind the simple SVD decomposition. For ma-
trix A ∈ Rm×n we recall the SVD as being:

A = UΣV T =

r∑
k=1

σkukv
T
k =

r∑
k=1

σkuk ⊗ vk (1)

and for the elements Aij of A we have

Aij =

r∑
k=1

UikΣkkVik (2)

Here ⊗ denotes the tensor (or outer product) x ⊗ y =∆

xyT ; Σ is a diagonal (r × r) matrix with nonzero singular
values of A (the square roots of the eigenvalues of ATA)
on its diagonal; uk and vk are the orthonormal columns of
the matrix U (m × r) and V (n × r), respectively, with vk
being the eigenvectors of ATA and uk = Avk/σk [5].

The SVD is useful whenever we have a two-dimensional
data set Aij , which is naturally expressed in term of a ma-
trixA (second order tensor). In the application of this paper
we will deal with cases where the dimension is bigger than
two, particularly is equal five (fifth order tensor). The SVD
may be generalized to higher order tensors (or multiway ar-
rays).

Given tensor T ∈ RI1×I2×...×I5 , the decomposition of
the fifth order tensor can be expressed as

T =
∑
J1

· · ·
∑
J5

GJ1J2...J5U
(1)
J1
⊗ U (2)

J2
⊗ · · · ⊗ U (5)

J5
(3)

Figure 1. (a) Illustration of a 3D tensor decomposition. (b) Un-
folding of the (I × J ×K)-tensor T to the (I × JK)-matrix, the
(J ×KI)-matrix and the (K × IJ)-matrix

or as a mode product [10]

T = G×1 U
(1) ×2 U

(2) · · · ×5 U
(5) (4)

where G ∈ RJ1×J2×...×J5 and U (n) ∈ RIn×Jn . The
graphic representation of the Higher Order SVD (3D) is
shown on the Figure 1(a);

The n-mode product of a tensor G ∈ RJ1×J2×...×JN by
a matrix U ∈ RIn×Jn denoted by G×n U is an (J1× J2×
· · · × Jn−1 × In × Jn+1 × · · · × JN )-tensor of which the
entries are given by

(G× U)j1j2···jn−1injn+1···jN =∑
jn

gj1j2···jn−1jnjn+1···jNuinjn (5)

In HOSVD, all matrices U (n) can be cal-
culated by performing a matrix SVD on the
In × (I1I2 · · · In−1In+1 · · · IN ) matrix obtained by a
flattering or unfolding of T [5, 10].

The n-mode matricization (or unfolding) of a tensor
T ∈ RI1×I2×...×IN is denoted by T(n) and arranges the
n-mode fibers to be column of the resulting matrix. Ten-
sor element (i1, i2, . . . , iN ) maps to matrix element (in, j),
where

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk; Jk =

k−1∏
m=1
m 6=n

Im (6)



An example of unfolding of the third order tensor T is
shown in Figure 1(b)

Since U (n) matrices are orthogonal, G from equation (4)
is easily calculated from (7) and it is called the core ten-
sor which shows the interactions of U (n) matrices – factor
matrices [10].

G = T ×1 U
(1)T ×2 U

(2)T · · · ×5 U
(5)T (7)

4. Manifold modeling framework
The goal of pose estimation is to predict the relative ori-

entation between the target subject and the viewer or cam-
era, in terms of three factors: yaw, pitch and roll angles.
Because data depends on several factors, like the identity
of the subjects and the three angles, it is convenient to use
tensors to hold the data. A powerful tool to analyze multi-
factor data is multi-linear decomposition (known as tensor
decomposition or HOSVD). It aims at separating variations
produced by the different factors into individual subspaces,
thus obtaining specific coefficients for each of the targeted
factors. We will see that, for the subspaces corresponding to
rotations, these coefficients approximately follow the struc-
ture of a closed curve, which can be modeled on terms of
trigonometric functions.

4.1. Motivating example

We start by studying a motivating example using 2D
images that capture out-of-plane rotations of simple ob-
jects along only one axis: the vertical axis. We consider
the Columbia University Image Library (COIL-20) data-set
[23], which consists of gray-scale images of multiple ob-
jects rotating continuously between 0 and 360 degrees.

We start by organizing the data in a tensor; since the ob-
jects rotate only along one axis, we have a 3-way tensor
T ∈ RI1×I2×I3 , where I1 is the number of objects, I2 is
the number of views, I3 is the number of pixels in an im-
age. Then, we apply HOSVD (eq. 4) to the data tensor to
obtain a representation that separates the different variation
factors that compose the data: object identity, viewpoint,
and appearance. The tensor T is decomposed as:

T = G×1 U
(id) ×2 U

(view) ×3 U
(pix) (8)

where G is the core tensor that governs the interaction
between the modes; U (id) spans the identity subspace
and contains row vector coefficients u(id) for each object;
U (view) spans the viewpoint subspace and contains row vec-
tor coefficients u(view) for each rotation angle; and U (pix)

spans the image/pixel space.
Let us focus on the rotation subspace. Figure 2 shows

the values of the first three coefficients of vector u(view)

for different rotation angles (e.g. the first three columns of
matrix U (view)). The figure also shows the corresponding

images of one of the objects in the dataset to better illustrate
the rotation angles. We can see that the values displayed in
Figure 2 approximately describe a spiral curve, making ap-
parent that the coefficients of the rotation subspace follow a
uni-dimensional manifold structure. This is consistent with
the fact that the variations captured by this subspace corre-
spond to a single parameter: the yaw rotation angle.

In Figure 3 we plot the above three coefficients sep-
arately, against the rotation angle. It can be seen that
the wave-forms obtained in this way resemble those from
trigonometric functions (which seems reasonable to model
rotation effects). It should be mentioned that, while we only
display the first columns of matrix U (view), the remaining
columns follow a similar pattern.

4.2. Head pose estimation framework

Based on the example from the previous section, we pro-
pose a 3D head pose estimation framework that combines
multi-linear decomposition with an analytic formulation of
each of the 3 rotation subspaces based on trigonometric
functions.

To consider the general case of all possible rotations
in 3D-space, we start by building a five-way tensor T ∈
RI1×I2×...×I5 , where I1 is the number of subjects in train-
ing set, I2, I3 and I4 are the number of yaw, pitch and roll
angles respectively, and I5 is the dimension of the feature
vector. This tensor is decomposed as:

T = G×1 U
(id) ×2 U

(y) ×3 U
(p) ×4 U

(r) ×5 U
(F ) (9)

whereG is the core tensor; U (id) corresponds to the identity
subspace; U (y), U (p) and U (r) correspond to yaw, pitch and
roll subspaces, and U (F ) spans the feature subspace.

After obtaining the decomposition of the tensor T it is
theoretically possible to use the second, third and fourth
modes in eq. (9) to estimate the head rotation angles.
Specifically, ifX ∈ RI5 is the feature vector of an input im-
age with unknown pose, its rotation angles can be obtained
by minimizing the reconstruction error [1, 32, 37]:

argmin
u(y),u(p),u(r),u(id)

‖X−W×u(y)×u(p)×u(r)×u(id)‖ (10)

where W = G × U (F ); u(y), u(p), u(r) and u(id) are the
targeted vectors. The final head pose estimation is typically
obtained by finding the nearest neighbors to the yaw, pitch
and roll estimates from eq. (10) using the training samples
from U (y), U (p) and U (r), respectively.

Unfortunately, it is difficult to guarantee accurate esti-
mates based on eq. (10) given that the reconstruction error
that is minimized depends on several factors. Indeed, the es-
timates obtained from eq. (10) are often not compliant with



Figure 2. Visualization of the first three coefficients of the pose variation subspace.

Figure 3. Values of the first three coefficients of the viewpoint subspace for the example of Section 4.1. The blue curves show the actual
values of the first three columns of matrix U (view) and the red curves show their least-squares approximation with cosine functions

the manifold structure of the different subspaces, which is
often enforced at a latter stage (e.g. nearest neighbor search
[31]).

Thus, we propose to impose analytic constraints to the
rotation subspaces by means of trigonometric functions.
Concretely, for each of the targeted angles (generically ω)
we model the coefficients in its corresponding subspace as:

f(ω) = α cos(βω + γ) + ϕ (11)

where α, β, γ and ϕ are parameters learned by least squares
approximation from the training set. Notice that there will
be a different set of parameters for each dimension of the
subspace, thus defining a spiral-like structure that analyti-
cally represents the underlying manifold.

Then, the head pose estimation in eq. (10) can be re-
written to include the trigonometric constraints as:

argmin
φ,θ,ψ

‖X −W × f(φ)× f(θ)× f(ψ)× u(id)‖ (12)

where f are the functions from eq. (11) that approximate
each column of matrices U (y), U (p) and U (r) with cosine
functions, u(id) is the vector of subject identity coefficients,
and φ, θ, ψ are the targeted angles (yaw, pitch, roll respec-
tively).

Notice that, for each angle, there are as many cosine
functions as dimensions in the yaw, pitch and roll sub-
spaces, but all the functions in a given subspace are gov-
erned by the same unique free variable – the rotation angle.
Thus, with the above constraints, the minimization of the re-
construction error in eq. (12) directly yields a solution that
is compliant with the unidimensional manifolds of the three
rotation angles.

The different steps of the proposed framework for the
training and test phases are summarized in Algorithms 1
and 2.

Algorithm 1: Training Phase
Input : Xk – feature vector for each of the subjects

k = 1..N
ω – the set of angles

Output: G,U (F ), set of parameters α, β, γ, ϕ for each
of the matrices U (y), U (p), U (r)

1 Build 5D tensor T ∈ RI1×I2×...×I5
2 Decompose T using HOSVD (eq.9)
3 T = G×1 U

(id) ×2 U
(y) ×3 U

(p) ×4 U
(r) ×5 U

(F )

4 foreach column ui in matrices U (y), U (p), U (r) do
argminα,β,γ,ϕ ‖ui − α cos(βω + γ) + ϕ‖ ;



Algorithm 2: Test Phase
Input : X – feature vector of unknown subject
Output: estimated angles – φ, θ, ψ

1 Initialize :
2 φ, θ, ψ with zeros;
3 u(id) as vector with zeros;
4 Define :
5 f (y)(φ) = α(y)cos(β(y)φ+ γ(y)) + ϕ(y)

6 f (p)(θ) = α(p)cos(β(p)θ + γ(p)) + ϕ(p)

7 f (r)(ψ) = α(r)cos(β(r)ψ + γ(r)) + ϕ(r)

8 W = G× U (F )

9 Estimate angles φ, θ, ψ :
10 argminφ,θ,ψ ‖X −W × f (y)(φ)× f (p)(θ)×

f (r)(ψ)× u(id)‖

5. Experiments
Our framework focuses on analytically modeling the un-

derlying structure of the pose manifold and can thus be ap-
plied to a wide variety of input features. Following the head
pose estimation challenge organized on the SASE database
[21], we base our experiments on the system proposed in
[11], which was the winner of the challenge. We evaluate
our framework in the same database of the aforementioned
challenge (SASE [20]) and also in the widely used BIWI
database [12], demonstrating state of the art performance in
both cases.

5.1. Experiments using SASE database

The data in SASE has been acquired with Microsoft
Kinect 2 camera and contains RGB and depth images in
pairs. The entire database includes 50 subjects (32 male
and 18 female) in the range of 7-35 years old, with more
than 600 frames per subject. For each person, a wide range
of yaw, pitch and roll variations are included. Specifically,
yaw and pitch angles vary within ±75 ◦, while roll angles
vary within ±45 ◦ [19].

The SASE database is distributed divided in two sets:
Training (comprising 28 subjects with a total of ∼ 17K
images) and Validation (12 subjects, ∼ 7K images)[11].
Thereby, we have used each of these sets for training and
testing, respectively.

As mentioned before, we base our tests on the system de-
scribed in [11], which is used as baseline. Specifically, for
each input image, the head region is isolated using cluster-
ing and then a 3D mesh that contains the head and a variable
part of the shoulders is reconstructed. Further, we use the
Shape Regression with Incomplete Local Features (SRILF)
algorithm [29] to automatically detect 12 prominent facial
landmarks. An example of the 3D mesh of the face with
the obtained landmarks is illustrated on Figure 4. Once the

facial landmarks are available, we use their coordinates as
input features to train and test our approach as described in
Section 4.2. It is worth to mention that the use of SRILF
to extract the input features provides robustness to both ex-
pression changes and missing parts. The latter is especially
important in databases such as SASE and BIWI, because
large pose variations induce self-occlusions that are likely to
affect the visibility of some landmarks. SRILF deals with
this problem by statistically inferring missing landmarks,
thus providing a complete set of coordinates even under oc-
clusions.

During the training phase, following Algorithm 1, we
build a 5D tensor T ∈ R28×40×40×30×36, that is: 28 sub-
jects, 40 bins to discretize yaw and pitch angles, 30 bins
for roll and 36-dimensional features (12 landmarks × 3 co-

Figure 4. The example of the 3D mesh of the face with obtained
landmarks

Figure 5. Curves defined by the coefficients in each of the sub-
spaces corresponding to the head pose variation along one of
the rotation axes. The first column corresponds to yaw rotation
and shows the curves built from the coefficients of the first three
columns of matrix U (y) (blue) and their approximation with a co-
sine function (red). The second and third columns correspond to
pitch and roll angles, respectively



Yaw (φ) Pitch (θ) Roll (ψ)
Without
constraint 12.18 13.51 10.38

With constraint
(proposed) 6.50 7.07 6.06

Table 1. Average pose estimation errors tested on the SASE
database

ordinates). After the tensor is built, we decompose it us-
ing eq. (9), obtaining the core tensor G ∈ R28×3×3×3×10,
U (id) ∈ R28×28 for the identity subspace; U (y) ∈ R40×3,
U (p) ∈ R40×3 and U (r) ∈ R30×3 for yaw, pitch and roll
subspaces, and U (F ) ∈ R36×10 for the features subspace.

Next, we fit cosine functions to the pose coefficients (eq.
11) and obtain four parameters(α, β, γ and ϕ) for each of
the coefficients of the three rotation subspaces (yaw, pitch
and roll), thus achieving an analytic representation of the
structure of the rotation manifolds. The results of the ap-
proximated coefficients for 3D pose variations are illus-
trated in Figure 5. For each of the rotation subspaces (yaw,
pitch and roll), the first, second and third coefficients of
all angle variations are plotted with two colors. The blue
curves are the original values from the first three columns
of the matrices U (y), U (p) and U (r) and the red curves are
the approximated values obtained with cosine functions. It
can be observed that the trigonometric approximation pro-
vides an excellent fit for the three rotation angles, with only
minor deviations that could be easily attributed to noise in
the data or in the extracted features.

After all function parameters were obtained, we used the
estimation approach based on the minimization of the re-
construction error (eq. 12). For the test stage, ∼ 7K fa-
cial images from the Validation subset of SASE were used.
We compared the obtained results of the proposed frame-
work with respect to the approach based on minimizing
the reconstruction error without any constraints. Table 1
summarizes the average pose estimation errors obtained by
each approach. It can be seen that the approach based on
the minimization without constraints obtained considerably
higher estimation errors, confirming the usefulness of im-
posing manifold-compliant constraints.

To put our results in a wider context, we also compare
them to other methods reporting head pose estimation error
on the SASE database. Since this database is rather new,
only a few papers have reported results on it. Table 2 sum-
marizes the average pose estimation errors of the proposed
framework and previous works on the SASE database. We
can see that the proposed method performs well compared
with state-of-the-art methods on the same dataset.

Yaw (φ) Pitch (θ) Roll (ψ)
Lüsi et al. [19] 22 19 18
Derkach et al. [11] 6.51 7.49 6.52
Proposed 6.50 7.07 6.06

Table 2. Average pose estimation errors of the proposed frame-
work and previous works on the SASE database

5.2. Experiments using BIWI database

The BIWI Database [12], acquired with a Kinect 1 sen-
sor, contains 24 sequences of RGB-D images of subjects
moving their heads over a range of roughly ±75◦ for yaw,
±60◦ for pitch and±50◦ for roll. In total this database con-
sists of around 17K images. Because there is no standard
experimental protocol for this database, we perform our ex-
periments under a leave-one-sequence-out strategy, so that
no sequence is used for training and test at the same time.
All other settings were kept as described in the previous
section for the SASE database.

Table 3 summarizes our results, as well as those pre-
sented by previous works reporting pose estimation errors
on this database. For each method, we show the average ab-
solute error per angle together with the respective standard
deviations (when provided by the authors). We also indicate
the type of input data that is used (depth, RGB or both) and
if pose estimations are done per-frame or using tracking.

The first thing we notice is that, despite our approach
is the only one using just depth information without track-
ing, out results are quite competitive. Indeed, we clearly
outperform other methods not doing tracking (except Papa-
zov et al. [25] who report smaller averages but consider-
ably higher standard deviations). Additionally, we achieve
results that are comparable or better than four out the the
seven tracking-based methods listed in Table 3, even though
tracking-based algorithms benefit from the fact that test se-
quences start with nearly frontal head poses; thus, the ac-
curacy of these algorithms to detect initial head poses other
than frontal is not clear.

Another interesting aspect is that, among methods re-
porting standard deviations, our approach obtains the
second-best results, only behind those from Padeleris et al.
[24], who use tracking.

6. Conclusions
In this work we address 3D head pose estimation from

depth data by proposing a novel approach to learn the man-
ifold defined by 3D rotations. In particular, our method is
able to explicitly model the underlying structure of the rota-
tion manifold with an analytic form that takes into account
the specific constraints imposed by orientation variations.
For this purpose, we use multi-linear decomposition to split
the pose variation factors into separate sub-spaces account-



Method Tracking Errors ± Std DomainYaw (φ) Pitch (θ) Roll (ψ)
Wang [33] No 8.8 ± 14.3 8.5 ± 11.1 7.4 ± 10.8 RGB + depth
Chen [8] No 9.9 ± 12.4 12.8 ± 17.2 6.9 ± 9.8 RGB

Papazov [25] No 2.5 ± 8.3 1.8 ± 4.3 2.9 ± 12.8 RGB + depthYes 3.0 ± 9.6 2.5 ± 7.4 3.8 ± 16.0
Padeleris [24] Yes 2.4 ± 1.8 3.0 ± 2.16 2.8 ± 2.1 depth
Fanelli [13] Yes 8.9 ± 13.0 8.5 ± 9.9 7.9 ± 8.3 depth
Meyer [22] Yes 2.1 2.1 2.4 depth

Baltrusaitis [3] Yes 6.3 5.1 11.3 RGB + depth
Li [17] Yes 3.0 3.2 5.3 RGB + depth
Yu [36] Yes 2.5 1.5 2.2 RGB + depth

Proposed No 3.6 ± 4.6 3.8 ± 4.8 5.2 ± 5.8 depth

Table 3. Average pose estimation errors and standard deviations of the proposed frame-work and previous works on the BIWI database

ing for yaw, pitch and roll effects. We show that the co-
efficients within each of these subspaces define a contin-
uous curve that can be modeled in terms of trigonometric
functions, which are indeed the bases to explain rotation
effects. We exploit this fact to introduce a minimization
framework for pose estimation based on tensor decomposi-
tion constrained by trigonometric functions so that the ob-
tained solutions are always compliant with the underlying
manifold structure.

We show that the proposed modeling based on trigono-
metric functions can accurately capture the behaviour ob-
served in the coefficients from the pose subspaces, by means
of qualitative examples on 2D and 3D datasets. We also
provide quantitative results of head pose estimation in two
public database, which demonstrate the advantages intro-
duced by the proposed constraints. Firstly, on the challeng-
ing SASE database, we show that directly applying exist-
ing multi-linear decomposition approaches yields poor pose
estimation errors, which dramatically improve when intro-
ducing the proposed trigonometric constraints, reaching top
state-of-the-art estimates. Later, we also report results on
the widely used BIWI database, showing that the proposed
framework is not only of theoretical interest but it can be
translated into a practical system to produce competitive
pose estimation results.
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