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Abstract— Early detection of facial dysmorphology - varia-
tions of the normal facial geometry - is essential for the timely
detection of genetic conditions, which has a significant impact
in the reduction of the mortality and morbidity associated
with them. A model encoding the normal variability in the
healthy population can serve as a reference to quantify the often
subtle facial abnormalities that are present in young patients
with such conditions. In this paper, we present the first facial
model constructed exclusively from newborn data, the Baby
Face Model (BabyFM). Our model is built from 3D scans with
an innovative pipeline based on least squared conformal maps
(LSCM). LSCM are piece-wise linear mappings that project the
training faces to a common 2D space minimising the conformal
distortion. This process allows improving the correspondences
between 3D faces, which is particularly important for the
identification of subtle dysmorphology. We evaluate the ability
of our BabyFM to recover the babys facial morphology from
a set of 2D images by comparing it to state-of-the-art facial
models. We also compare it to models built following an
analogous pipeline to the one proposed in this paper but
using nonrigid iterative closest point (NICP) to establish dense
correspondences between the training faces. The results show
that our model reconstructs the facial morphology of babies
with significantly smaller errors than the state-of-the-art models
(p < 10−4) and the “NICP models” (p < 0.01).

I. INTRODUCTION

In the past years, many studies have highlighted the re-

lation between craniofacial dysmorphology (deviations from

the normal morphology of the face and the head) and some

disorders from developmental origin, e.g. Down syndrome

[1], schizophrenia [2], bipolar disorder [3], fetal alcohol

syndrome [4], 22q11.2 deletion syndrome [5] and Noonan

syndrome [6]. The analysis of the facial morphology can

therefore provide relevant information in the context of

mental and genetic disorders, and it has been proposed

as a potential index of developmental disturbance [3], [7].

Furthermore, when conducted on babies, this analysis may

serve as a pre-screening tool, facilitating the early detection

of developmental disorders, which is of major significance

[8], [9].

Dyspmorphology patterns in most of the disorders men-

tioned above tend to be subtle and are more accurately

detected by means of three-dimensional (3D) analysis of the

facial geometry. Such analysis must necessarily be addressed

in relative terms with respect to a reference population

of normal morphology, for which 3D Morphable Models

(a) Risen shoulders occluding
jaw and chin.

(b) Adult hand occluding
baby’s face.

(c) Suboptimal stereo recon-
struction.

(d) A pacifier occluding part of
the face.

Fig. 1: Examples of the difficulties that rise when acquiring

3D scans of babies.

(3DMM) are a valuable tool. 3DMMs [10] encode the

anatomical variability of the facial geometry in a given

population within a statistical model, which can be used to

fit and analyse new data. Further, an additional advantage

is that they allow recovering the 3D facial geometry from

one or more uncalibrated 2D pictures, using a 3D-from-2D

face reconstruction system [11]. This is especially relevant

when targeting the analysis of infants, since the acquisition

of 3D scans with sufficient quality becomes increasingly

problematic as the targeted babies are younger (see Fig. 1).

The 3D-from-2D reconstruction opens also the possibility

for e-health applications, e.g. by integrating the system into

smarthphones, thus avoiding the use of expensive specialised

machinery and allowing for remote screening.

Unfortunately, although there are several 3DMMs that

are publicly available for adults and children, the facial

morphology of babies differs much from that of adults (and

even children). For this reason, there is the need for a Baby

Face Model, whose construction we address in this paper.

As explained above, one of the key aspects of the model

is its accuracy to represent the facial geometry, which is



strongly affected by the way in which surface correspon-

dences are obtained during the construction of the model.

Thus, we depart from the widespread use of methods based

on non-rigid iterative closest point (NICP) [12] to establish

correspondences and propose to use spectral methods, which

are based on the eigendecomposition of the Laplace Beltrami

Operator (LBO) [13]. The spectrum of the LBO is an

isometric invariant strongly linked to the geometry of the

surface and its intrinsic structure [14]. It has been shown that

level sets of LBO eigenfunctions follow geometric features

[15], highlight protrusions and reveal (global) symmetry [16].

We construct our model with the help of an intermedi-

ate 2D space that is obtained from eigenfunctions of the

LBO and constrained by sparse correspondences. The re-

sulting mappings, known as Least Squares Conformal Maps

(LSCM) [17], yield a common 2D space that facilitates

re-parameterisation while allowing mapping each of the

input surfaces with minimum conformal distortion. Such

strategy should lead to improved model correspondences, but

at the same time entails specific technical challenges that

complicate its practical implementation. Firstly, the obtained

eigenfunctions define piece-wise linear mappings whose ex-

trapolation is often non-plausible, making the resulting 2D

space very sensitive to missing parts of the input surfaces.

Secondly, the exact extent covered by the input surface,

which is often variable, can have an impact in the mapping

constraints near the boundary, resulting in overlapping pa-

rameterisations of regions that were originally far away in the

input surfaces. In other words, the mapping is optimised to

be locally conformal and fit a set of sparse correspondences,

outside of which its behaviour is not globally constrained

and may be allowed to bend over itself.

In this paper, we address the above difficulties and present

the first 3DMM built from babies, the Baby Face Model

(BabyFM). We demonstrate quantitatively and qualitatively

that using spectral methods to establish dense correspon-

dences allows for the construction of a 3DMM that is

able to capture geometric variations more accurately than

using other state-of-the-art methods. We demonstrate this by

evaluating the ability of our model to recover the 3D facial

geometry of a baby only from a set of 2D pictures.

II. RELATED WORK

The construction of a 3DMM generally consists of two

main parts: 1) establishing point-to-point correspondences

between the 3D faces in the training set, and 2) building

a model with the registered data. Whereas the second part

is generally done using principal component analysis, the

methods used to carry out the first part are diverse.

For the model to be precise, the point-to-point correspon-

dences across all the 3D faces have to be very accurate to

ensure that the geometric variations captured by the model

are due to changes of the facial geometry from one subject

to another. Essentially, two main approaches have been

proposed for doing so. The first one consists on projecting

the training meshes onto some 2D space with a bijective

mapping, where the correspondences are established, and

then unprojecting them to obtain the new triangulation [10].

In the second approach, such correspondences are established

directly in 3D by non-rigidly registering a template mesh to

all the input scans [18], [19], [20], [21].

Blanz and Vetter [10] constructed the first facial morphable

model. To put the 3D faces of the training set in point-to-

point correspondence, they used an optical flow algorithm

on the projection of the 3D faces to a UV-space using a

cylindrical parametrisation. These correspondences between

the 2D projections of the 3D scans implicitly establish a

3D-to-3D dense correspondence due to the bijection of the

cylindrical parametrisation.

Unlike Blanz and Vetter [10], the 3DMMs that were

presented afterwards were constructed by establishing cor-

respondences directly in 3D.

Paysan et al. [18] constructed the well-known Basel Face

Model (BFM) by using the NICP algorithm [12] to register

a template mesh to the training scans. The NICP algorithm

progressively deforms the template mesh towards the target

mesh by minimising the distance between each point on the

template and its closest point on the target. Additionally, to

ensure the smoothness of the deformed template mesh, a

stiffness term is added to penalise the difference between

transformations of neighbouring vertices.

Also using NICP to establish point-to-point correspon-

dences, Booth et al. [20] built the largest 3DMM to date, the

Large Scale Facial Model (LSFM). They proposed a fully

automated pipeline to construct a 3DMM, which consists of

an automatic landmark detector together with the NICP algo-

rithm for computing dense correspondences and, finally, an

automatic removal of erroneous correspondences before the

principal component analysis (PCA) model is constructed.

Using a different 3D to 3D registration algorithm, Huber

et al. [19] presented the Surrey Face Model (SFM). The

scans were put in dense correspondence using the iterative

multi-resolution dense 3D registration (IMDR) method [22],

whose underlying rationale is similar to that of NICP. Both

methods estimate the transformation of each point in the

template mesh by minimising the distance between the trans-

formed point and its closest point in the 3D scan. However,

they differ how they ensure smoothness of the transformed

template mesh. Whereas NICP does so by minimising the

distance between transformations of neighbouring vertices,

IMDR enforces the distance between neighbouring points in

the template mesh to be similar to the distance between their

closest points in the 3D scan.

Dai et al. [23] built a 3D model of the whole head,

the Liverpool-York Head Model (LYHM). They also estab-

lished dense correspondences by registering a template mesh;

however, they used the coherent point drift method (CPD)

[24], which, unlike NICP and IMDR, follows a probabilistic

approach. The non-rigid alignment of two point sets is

considered as a probability density estimation problem. The

points in the template mesh are assumed to be the centroids

of a Gaussian mixture model (GMM), and the points of the

3D scans to be data points generated by the GMM. The

location of the centroids (points of the template) and the



Fig. 2: Proposed pipeline for the construction of a 3DMM. (1) The training 3D faces are projected to a 2D spaces using

LSCM. (2) The 2D space is reparametrised and the template is derived. (3) Statistical data completion is applied to those 3D

faces that do not cover the whole common mask. (4) The new parametrisation is resampled to obtain a uniform triangulation

in 3D. (5) The statistical model is build using PCA.

variances of the posterior probability are estimated using the

Expectation-Maximization algorithm [25]. To avoid under-

fitting, the CPD algorithm is followed by mutual nearest

neighbour projection regularised by the LBO.

Even though the models presented above are widespread,

they are not suitable for the purpose of this work since

we are focusing on babies. Although some of these works

include infants or even provide child-specific models, such

as the LSFM under 7 years old and the child model from the

LYHM, they are not able to accurately estimate the facial

geometry of a baby. This occurs due to the low number of

infants included in both models with respect to the number

of non-infants subjects; this biases the model toward the

geometry of the latter, which can be quite different from the

facial geometry of babies, as we will show in this paper.

III. PROPOSED PIPELINE

In this section, we introduce the proposed pipeline for a

3DMM construction using LSCM to build dense correspon-

dences. Fig. 2 graphically summarises the main blocks of

the pipeline, which are explained in detail in the following

sections.

A. Overall idea

Our method is based on projecting the 3D faces from

the training set onto a 2D space where an appropriately

parameterised template can be constructed from the data.

Such template is later mapped back to each of the 3D faces,

obtaining surfaces with the same triangulation transferred by

the template.

The projection onto the 2D space is carried out using

LSCM, which are continuous piece-wise linear mappings.

LSCM are constructed by assigning an affine map for each

triangle, imposing continuity across edges, and locally min-

imising the conformal distortion. Intuitively, minimising the

conformal distortion can be understood as minimising the

change in aspect ratio of every transformed triangle, i.e.,

preserving the angles.

Let S be a surface defined by a triangulated mesh M =
{V,F} with vertices v = (x, y, z) ∈ V ⊂ R3 and triangles

f = (i, j, k) ∈ F defined by the indices of the vertices

{vi,vj ,vk} ⊂ V that form the triangles. Then, we can define

a 2D parametrisation (u1, u2) ∈ R2 for a basis {u1,u2}
so that the surface is defined by the mapping G(u1, u2) =
(x, y, z) ∈ S . It shall be noted that LSCM produce a mapping

that is approximately conformal, as a discrete surface cannot,

in general, be mapped to 2D under strict conformality. In

[17], a practical implementation of LSCM is derived by

noting that, for a mapping to be conformal, the gradients

with respect to the parameterisation variables need to be

orthogonal and have the same norm,

∇u2 = rot90(∇u1),

where rot90 is a 90 degree rotation (anti-clockwise in this

case), and the gradients of u1 and u2 are taken with respect

to a local coordinate system placed at each triangle of the

surface. Given the piece-wise linear representation provided

by the triangulation, gradients are assumed constant within

triangles, hence they play the role of infinitesimal elements.

As a result, we end up with two equations for each of the

P triangles of M, which are linear in the vertex coordinates

in terms of u1 and u2, obtaining an affine map gp for

each triangle, which together determine the global mapping

G = {g1, . . . ,gP } [17]. The resulting system of equations

is underdetermined unless we fix the coordinates in R2 of

two or more points. In this way, we obtain a common 2D

domain Ω ⊂ R2 and piece-wise linear mappings from it to

each surface in the training set Sm, Gm : Ω → Sm, with

m = 1, . . . ,M .

The mappings Gm must be invertible to allow any point

in the 2D space, p = (x, y)T ∈ Ω, to be mapped back to a

unique point v in the 3D face Sm. This allows us to map any



reparametrisation of the 2D space back to 3D unequivocally

and, specifically, to map our 2D template (see Section III-C)

to the 3D faces in the training set. This is done by expressing

p ∈ Ω in barycentric coordinates. Assume that the projection

of a face Sm, which is parametrised by a mesh Mm =
{Vm,Fm}, is a triangular mesh M̂m = {V̂m,Fm}, with

V̂m ⊂ Ω. Let f = (i, j, k) ∈ Fm be the triangle defined

by vertices {qi,qj ,qk} ⊂ V̂m ⊂ Ω in which p lies, then

p = aiqi + ajqj + akqk and, its unique preimage v ∈ Sm
is defined as

v = Gm(p) =
∑

l∈{i,j,k}
alGm(ql). (1)

We can then reparametrise the meshes Mm in our dataset

with the triangulation of the template T = {VT ,FT } ⊂ Ω.

Therefore, the new triangular mesh M′
m = {V ′m,F ′m} for

surface Sm is defined as⎧⎨⎩V ′m =
{
vj = Gm(pj)

}N

j=1

F ′m = FT

(2)

where pj ∈ VT and N is the number of vertices in the

template.

B. Further mapping constraints

Even though LSCM have theoretical foundation that re-

inforces the improvement of the correspondences, its prac-

tical implementation entails technical challenges that come

from overlapping parametrisations, i.e., different triangles

fp1
, fp2

∈ F mapped to the same region in Ω (see Fig. 3

for a visual example). The overlappings in the 2D space

compromise the bijective property of the global mapping G,

and thus, the existence of the inverse, which is essential for

our purpose. In fact, the injective property is not satisfied

in the presence of overlappings, since a single point in the

2D space lies inside two different triangles, thus it can be

mapped to the surface using two different affine maps, gi,gj ,

one for each triangle, ending up in two different locations

in 3D. Fig. 3 shows an example of this situation in which

overlappings occur at the bottom of the face.

Fig. 3: A 3D triangulated face (top) is projected to a 2D

space (bottom) producing overlappings visible at the bottom

of the face (best seen in colour).

To correct the overlapping parametrisation, we employ

the method proposed by Lipman [26]. Without further con-

straints, the mappings may produce flips of the triangles,

projecting them with opposed orientation. Lipman [26] pro-

posed to preserve the orientation of the triangles by imposing

the determinant of the matrix of the linear mapping to be

positive. However, when a 3D face has missing parts (such as

missing chin), overlappings in the 2D projection may occur

not due to flips of the triangles but to remote parts of the

3D face that are mapped to the same region, thus Lipman’s

method cannot solve them. In the mapping process, the

overlapping is addressed locally so that contiguous triangles

do not overlap each other, but, without further restrictions,

triangles that are far away from each other may be mapped

to the same region in Ω. For this reason, we propose to

add extra anchor points to the LSCM (in addition to the

> 2 anatomical landmarks already fixed). To do so, we

non-rigidly register another 3D face from our dataset to the

face that produces overlappings using NICP. The resulting

surface is then mapped to the 2D space using LSCM, which

allows estimating the location of the projected vertices of the

original surface by using (1). Then, the original 3D face is

again mapped to the 2D space using a subset of these 3D-2D

correspondences to further constrain the LSCM.

Note that, in this work, NICP is only used to register

two surfaces from our dataset, hence no pre-designed 3D

template mesh is used in any step of the pipeline. The

template we work with is automatically derived from the

data as part of the proposed method.

C. Template construction

As stated above, we need a triangulated template to

transfer its triangulation to the 3D faces in the training

set, establishing dense correspondences between them. Such

template is derived in the 2D space Ω, and then mapped

to each 3D face Sm using the estimated globally invertible

maps Gm. In this section, we address the construction of

such template mesh.

First, the 2D space is parametrised by defining an orthog-

onal 2D-lattice Λ as

Λ =
{
p ∈ R2 | p = n1u1 + n2u2, n1, n2 ∈ Z

}
where {u1,u2} is an orthogonal basis of R2.

The derived template determines the region that is covered

by all the 3D training faces since only the points inside the

region defined by the template are mapped to the 3D faces.

Consequently, the template also defines the region that will

be covered by the final 3DMM. However, each face covers a

different area, thus only the points in Ω that can be mapped

to all the 3D faces should be considered, hence the template

should be defined as the intersecting region of projections of

the faces in the training set. Nevertheless, as illustrated in

Fig. 4, the region covered by the intersection (bright yellow)

may end up being very limited.

Therefore, we define a template containing the vertices

in Λ that lie inside a certain percentage η% of the faces.

As an illustration, instead of taking as a template the bright



yellow region in Fig. 4, we take the yellow and the orange

regions. In other words, the set of vertices of the template

VT is defined as

VT =

{
p ∈ Λ

∣∣∣∣∣
M∑
i=1

1{q∈Am} ≥M · η%, q = p,p′
}

where 1 is the indicator function, Am ⊂ Ω is the projection

of Sm, M is the number of training faces and p′ the

symmetric point of p with respect to the line {u = 0} ⊂ Ω.

By imposing that both p and p′ should also lie inside η% of

the faces, we are defining a symmetric template. This allows

us to easily reflect the 3D faces and enlarge the training

set used to build the 3DMM by including the reflected

meshes. Finally, the set of triangles of the template, FT ,

is defined as the Delaunay triangulation for the vertices VT .

The constructed template is finally mapped to each 3D face

Sm in the training set using (1), obtaining reparametrisations

M′
m = {V ′m,FT } of Sm defined as (2).

Unfortunately, by considering a η% of the faces instead

of the intersection, there are vertices in VT that cannot be

mapped to all the 3D faces in the training set. If a point

p ∈ VT does not lie inside any triangle of a 3D face Sm,

�f = (k1, k2, k3) ∈ Fm such that p =

3∑
j=1

ajqkj

with qkj
∈ V̂m and V̂m ⊂ Ω the projection of Vm ⊂ Sm,

then (1) cannot be applied since p ∈ Ω does not belong

to the domain of Gm. This issue is addressed in the next

section.

Fig. 4: Superimposed faces mapped onto the 2D space.

Colours show the percentage of faces that cover each region.

D. Statistical data completion

If the location of a vertex in the template is unknown

for any 3D face, the statistical model cannot be built since

there are surfaces with missing parts. To alleviate this issue,

we estimate the missing regions of the incomplete 3D faces

based on the statistical data completion method presented by

Ruiz et al. [27]. They proposed to fit a PCA model to a 3D

point cloud by minimising the reconstruction error weighting

the contribution of each point, i.e.,

E(xr) = (x− xr)TW(x− xr) (3)

where xr is the reconstruction of x (projecting x to the PCA

space and unprojecting it) and W is the weighting matrix

with values defined by the user.

In this work, we estimate the unknown vertices in a face

Sm by fitting a PCA model to the known vertices, which, by

giving them high weight, act as anchors. However, a PCA

model of the whole face cannot be built since still some faces

have missing regions. Therefore, we define a patch around

the missing region as the points closer than a threshold to a

missing point. Since a correspondence is established between

V ′m and VT , the patch is defined in VT , where all the points

are known. Then, we build the PCA model with the faces’

patches in which all the 3D coordinates are known. Let

{Φ,Γ,x} be the eigenvectors matrix, the diagonal matrix

with the eigenvalues and the mean of the PCA model of the

patch, respectively, and let x be the vector containing the

coordinates of the patch in Sm. Then, the coordinates of x
in the PCA space, b, can be estimated using the closed-form

solution of (3) provided by [27],

b =
(
ΦTWΦ+ λΓ−1

)−1
ΦTW(x− x), (4)

where λ > 0 is a balancing factor that controls the con-

tribution of the regularisation term, bTΓ
−1
b, added to (3).

Therefore, x can be recovered as

xr = x+Φb.

Notice that x contains unknown elements (since some

vertices are unknown), thus, they are initialised as the

corresponding vertices in x, such that x − x = 0 for the

elements that are coordinates of unknown vertices.

E. Final model construction

Although the parametrisation of the obtained template is

uniformly distributed in the 2D space, when it is mapped

back to 3D, this uniformity is not preserved. In order to

obtain a uniform triangulation in 3D, we apply a mesh

fairing algorithm based on Lloyd’s work [28]. We deform the

triangulation of the template in Ω using Lloyd’s algorithm

but, instead of weighting each triangle centre proportionally

to its area in Ω, we weight it proportionally to its area in

the mean 3D face. Therefore, the location of vertices of the

template is changed according to the area of the triangles

in 3D. However, when doing so, the symmetric property

of the template may be lost. To avoid that, each pair of

symmetric points is displaced by the mean of their individual

displacements, but along directions that are symmetric with

respect to the line {u = 0}. Finally, this new parametrisation

(uniform in 3D) is transferred to all the 3D faces in the

training set by again using (1).

Given that reflected faces are different to their original,

geometrically speaking, we can include the reflections to the

training set to enlarge the population with which the 3DMM

is built. The 3D faces can be reflected very easily due to the

symmetric property of the constructed template.

From the set of reparametrised 3D faces and its reflected

meshes, erroneous correspondences are automatically dis-

carded by detecting outliers of the Mahalanobis distances



computed in the PCA space based on leave-one-out. Finally,

all the remaining shapes are rigidly aligned and PCA is

applied to build the statistical model.

IV. EXPERIMENTAL RESULTS

A. Baby Face Model data
With the pipeline proposed in this work, we constructed

the BabyFM. It was built with data obtained at the Children’s

National Hospital in Washington D.C.. The dataset consists

of scans of 45 babies (mean age 8.42 months, standard

deviation of 6.45). The data is roughly gender-balanced (56%
male) and several ethnicities are included: Caucasian (47%),

African American (24%), Hispanic (20%), and Asian (9%).
Given the problems that occur when scanning an infant

(see Fig. 1), they were manually examined so as to select

appropriate 3D data. For each selected scan, the surface

that is not strictly face, i.e. outside the region covering

the ears, forehead and chin, was removed. The selected 3D

faces were marked with 23 anatomical landmarks described

in [29], except the nostrils top and the stomion. These

landmarks were used to constrain the LSCM by fixing their

2D coordinates in Ω.

B. Experiments description
To evaluate our BabyFM, we tested its ability to ac-

curately reconstruct the 3D facial geometry of an infant

from 2D images. Specifically, we applied the 3D-from-2D

face reconstruction algorithm proposed by Tu et al. [30] to

recover the 3D facial geometry of a baby by fitting our

BabyFM to three photographs of him/her: one frontal and

two profiles (left and right). The fitting process is based

on minimising the distance between a set of 2D landmarks

in the image and the projection onto the image plane of

the corresponding landmarks in the 3DMM. To ensure the

plausibility of the resulting face, we projected the vector

of estimated parameters onto the model space, which was

constrained under the multi-variate normal assumption to

achieve a probability ≥ 0.95 [31]. We refer to [30] for more

details on the 3D-from-2D face reconstruction algorithm.

We quantify the accuracy of the reconstructed 3D face by

computing the reconstruction error.
Let MGT be the landmarked ground truth mesh, then, the

pipeline of the evaluation process is as follows:

1) Fit the 3DMM to the three 2D images using [30].

Notice that the location and the rotation of the recon-

structed mesh M are arbitrary, thus the next step is

necessary to ensure the significance of the computed

errors.

2) Rigidly align M to MGT using anatomical landmarks,

which, in the reconstructed mesh, are defined by con-

struction of the 3DMM.

3) Compute the distance from M to MGT as

d(M,MGT) =
1

N

N∑
i=1

min
j
||vi − vGT

j ||2, (5)

where vi ∈ M, vGT
j ∈ MGT and N is the number of

vertices in M.

Following the method described above, we carried out two

different experiments over a test set of 51 subjects, disjoint

with respect to the training set used to build the BabyFM.

Such test dataset is composed of 51 landmarked facial scans

of babies between 3 and 36 months old, which serve as

ground truth, allowing to compute the reconstruction error.

Each 3D face is projected to the image plane with different

yaw angles to generate the three 2D pictures (frontal and left

and right profile). Notice that the 2D images are automati-

cally landmarked by also projecting the set of landmarks in

the 3D face.
Experiment 1. The objective of our first experiment is

to assess the need of a 3DMM specific for babies, since the

already available ones do not capture with sufficient accuracy

the variations of the facial geometry of babies. To this end,

we compared our BabyFM to three state-of-the-art 3DMMs:

the widespread BFM [18]; the LSFM under 7 [20], which

only contains subjects younger than 7 years old; and the

LYHM child [23], which only contains children (> 4 years

old1). All the models were fitted to the images in the same

way, using 95% of the variance captured by them.
Experiment 2. The goal of the second experiment is to

compare the proposed pipeline for constructing a 3DMM

with the pipeline of the state-of-the-art BFM [18] and LSFM

[20]. Both the BFM and the LSFM are constructed using the

same two main modules2: i) a NICP-based dense correspon-

dence with a predefined template and ii) a PCA decomposi-

tion. Following the BFM-LSFM pipeline and using the same

training set as for our BabyFM, we built NICP-Baby models

to allow for a direct comparison of the pipelines.
However, the pipelines based on NICP require a pre-

designed 3D template mesh as input, which in this case is

a baby face. In contrast, our method derives the template

automatically from the training data (see Section III-C),

hence providing it as an output. Therefore, we created two

different NICP-Baby models for comparison:

1) NICP-mean: we used the mean face of the BabyFM

as the template mesh for NICP. Note that to be able

to use such mean, we would need to first build our

BabyFM so that its output can be used by NICP.

2) NICP-reference: to provide a more independent com-

parison, we built another model using the reference 3D

face from the training set that was used to constrain

the LSCM mapping of the BabyFM (see Section III-

B). We used the reference mesh reparametrised by

our model so that both the triangulation and the area

covered by the models are the same, facilitating the

comparison.

C. Results
The results shown in this section are expressed in mil-

limetres and are computed over a common facial region

1The exact age range of the LYHM child model [23] is not specified by
the authors.

2Even though the LSFM includes other steps at the beginning to auto-
matically detect a set of sparse initialisation landmarks, those are already
available in our training set and thus excluding those steps does not alter
the comparison.



defined with respect to anatomical landmarks marked on all

the models. Such facial region is needed since each model

covers very different areas of the face, and parts furthest

from the face may have considerably higher errors, making

the comparison unfair. The defined facial region extends up

to the limits with the forehead, the ears and the neck (but

without including them; see Fig. 5).

Experiment 1. Table I shows the mean and the standard

deviation of the reconstruction errors computed using (5)

over the 51 subjects of the test set. Results show that

our BabyFM outperforms all the compared state-of-the-art

3DMMs with statistically significant differences (p < 10−4

using a one-sided sign test).

TABLE I: Mean and standard deviation of the errors com-

puted over the 51 subjects using (5) (in mm).

3DMM Mean ± std

BabyFM (our) 1.68± 0.49

BFM [18] 2.32± 0.50

LSFM under 7 [20] 3.43± 0.69

LYHM child [23] 2.37± 0.57

Fig. 5 shows the mean error per vertex for each of the

four models, computed without taking the mean for all the

N vertices in (5). Whereas the rest of the models have

considerably large regions with errors ≥ 4mm, our model

is able to recover the facial geometry with low errors for

almost all the vertices.

(a) BabyFM (our) (b) BFM [18]

(c) LSFM under 7 [20] (d) LYHM child [23]

Fig. 5: Mean errors per vertex of the reconstructions (in mm).

Furthermore, Fig. 6 shows qualitatively the improvement

of our model with respect to the state-of-the-art with an

example subject. Whereas the reconstruction obtained with

BFM [18] (Fig. 6c) does not even look like a baby, the

LSFM under 7 [20] (Fig. 6d) and the LYHM child [23]

(Fig. 6e) produce reconstructions very similar to the mean

of the models, not capturing details specific of this baby. In

contrast, our BabyFM recovers facial features that make the

reconstruction resemble the original 3D face.

(a) Original (b) BabyFM (our) (c) BFM [18]

(d) LSFM under 7
[20]

(e) LYHM child [23]

Fig. 6: Example of the reconstruction of a baby with different

models.

Experiment 2. This experiment aims to compare the

proposed pipeline detailed in Section III) with the one used

to built the BFM and LSFM, by comparing the BabyFM with

the NICP-mean model and the NICP-reference model. Note

that the NICP-mean model is biased towards the behaviour

of our BabyFM, since the template mesh used to carry out

NICP is the mean face of our model. This is demonstrated

in Table II, where it is shown that the NICP-mean model

produces reconstructions with lower errors than the NICP-

reference model (p < 10−3 using a one-sided sign test).

Even though the errors of both NICP models are lower than

those of the state-of-the-art models from experiment 1 (see

Table I), our BabyFM still outperforms them (p < 10−9 for

the NICP-reference model and p < 0.01 for the NICP-mean

model, using a one-sided sign test).

TABLE II: Mean and standard deviation of the errors com-

puted over the 51 subjects using (5) (in mm).

3DMM Mean ± std

BabyFM (our) 1.68± 0.49

NICP-mean 1.86± 0.49

NICP-reference 2.08± 0.54

Fig. 7 illustrate these results: it shows the errors per vertex

for the three models. It can be seen that our BabyFM is the

one with less regions with > 3mm of error.

V. CONCLUSIONS

In this paper, we propose an alternative pipeline to con-

struct a 3DMM as opposed to the state-of-the-art methods.

Our proposed pipeline is based on establishing correspon-

dences between the training faces on a 2D space defined

using LSCM, which provide a more robust theoretical foun-

dation than cylindrical maps and the widespread methods



(a) BabyFM (our) (b) NICP-mean

(c) NICP-reference

Fig. 7: Mean errors per vertex of the reconstructions (in mm).

based on the non-rigid registration of a pre-designed 3D tem-

plate mesh to the training faces. In addition, we automatically

derive the template from the faces in the training set, avoiding

the need of any external pre-designed 3D template.

With the proposed pipeline, we constructed the first

3DMM built from infants, the BabyFM. We show the need

for a specific 3DMM of babies by proving that state-of-the-

art 3DMMs built from adults or children are not able to cap-

ture the geometric variations of a baby’s face. Additionally,

we demonstrate that the proposed LSCM approach allows

for an improvement of the correspondences with respect to

methods based on non-rigid registration, such as NICP.

As a result, the BabyFM shows potential to support the

identification of subtle facial dysmorphology which is critical

for the early detection of a variety of conditions, including

genetic syndromes.
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