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Abstract— Human facial tracking is an important task in
computer vision, which has recently lost pace compared to other
facial analysis tasks. The majority of current available tracker
possess two major limitations: their little use of temporal
information and the widespread use of handcrafted features,
without taking full advantage of the large annotated datasets
that have recently become available. In this paper we present
a fully end-to-end facial tracking model based on current state
of the art deep model architectures that can be effectively
trained from the available annotated facial landmark datasets.
We build our model from the recently introduced general
object tracker Re3, which allows modeling the short and long
temporal dependency between frames by means of its internal
Long Short Term Memory (LSTM) layers. Facial tracking
experiments on the challenging 300-VW dataset show that
our model can produce state of the art accuracy and far
lower failure rates than competing approaches. We specifically
compare the performance of our approach modified to work
in tracking-by-detection mode and showed that, as such, it
can produce results that are comparable to state of the art
trackers. However, upon activation of our tracking mechanism,
the results improve significantly, confirming the advantage of
taking into account temporal dependencies.

I. INTRODUCTION
The human face is arguably one of the most important

deformable objects for analysis, especially for tracking, with
numerous real world applications, such as facial animation,
human activity recognition and human - computer interaction
[24]. The recent growth of facial datasets in the wild with
annotated landmarks such as 300W [16] and 300 Videos in
the Wild (300-VW) [17] has led to rapid development of
facial analysis tools by introducing powerful deep learning
models that are able to automatically extract more represen-
tative features from larger scale datasets. These new models
have pushed forward the state of the art, outperforming the
accuracy reported by earlier methods based on handcrafted
features. We can find examples of such models targeting face
detection [20], [32], facial classification and verification [14],
[19], and facial expression analysis [11].

However, current progress in deformable facial tracking
has been relatively slower when compared to other tasks
and it has been less influenced by deep learning models [3].
Furthermore, currently available trackers make little use of
temporal information. Indeed, most of them do not really
take into account temporal information but process each
frame independently and rely on doing so with sufficient
precision to achieve tracking-like performance. In contrast,
other trackers do some temporal modelings, but they are
mostly limited to the adjacent frames [26],[15]. This inhibits

current facial trackers to take full advantage of the temporal
information contained in video sequences [27].

In this paper we present a fully end-to-end facial tracking
model based on current state of the art deep model archi-
tectures that can be effectively trained from the available
annotated facial landmark datasets. We build our model from
the recently introduced general object tracker Re3 [4], which
allows modeling the short and long temporal dependency
between frames by means of its internal Long Short Term
Memory (LSTM) layers. While Re3 is too generic to be
directly used as facial tracker (its performance would be
suboptimal), we introduce architectural modifications that
lead to a robust facial tracker achieving state of the art
performance. More specifically, the contributions in this work
are:

1) We replaced the original Skip Convolution Networks
from Re3 by the more robust Inception Residual Net-
works [18] through transfer learning.

2) We embed our main tracker together with additional
layers that validate the tracking results at every frame
and trigger a re-initialization strategy if drifting is
detected.

3) To the best of our knowledge, we are the first to
successfully train an end-to-end network that can
achieve state of the art face tracking on the 300-VW
benchmark.

4) We investigate the impact of different temporal win-
dows in the performance of face tracking.

II. RELATED WORK

Currently, the most popular facial tracking technique is
Tracking by Detection, which consists of performing facial
detection and landmark localization at each frame. One
example of this strategy is the work from Uricar et al. [21]
which uses tree-based Deformable Part Models (DPM) for
facial landmark detection and localisation with Kalman Filter
smoothing.

Other tracking methods perform face detection only in
the first frame and then apply facial landmark localization
using the fitting result from the previous frame as initial-
ization. One such example is the work from Xiao et al.
[26] which adopts a multi-stage regression-based approach
to initialize the shape of landmarks with high semantic
meaning. Other examples include the work from Raja et
al. [15] which combines a global shape model with sets
of response maps for different head angles indexed on the
shape model parameters and the works from Wu et al978-1-7281-0089-0/19/$31.00 c©2019 IEEE
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[23] who apply shape augmented regression. There are also
hybrid approaches which combine tracking by detection and
initialization based on the latest fitting result. Among these,
combinations of Coarse-To-Fine Shape Search (CFSS) [33]
landmark localiser with multiple general-object trackers have
shown to perform particularly well [3].

However, all methods derived from tracking by detec-
tion share the limitation of not considering the temporal
information contained in video sequences. Furthermore, it
is difficult to obtain consistent initializations from most
face detectors, which tends to reduce the final landmark
localisation accuracy [12]. Some approaches try to mitigate
this problem by including the information from the adjacent
frames to capture short temporal dependencies. For example,
Yang et al. [28] used time series regression on adjacent two
frames, which led them to achieve the best result reported
so far on the biggest deformable facial tracking dataset: 300
Videos in the Wild (300-VW) [17].

With the recent growth of facial landmark datasets, such as
300W [16], Menpo [30], 300-VW and LS3D-W [2], current
methodologies on facial analysis started to shift from systems
based on handcrafted features towards incorporating deep
learning architectures [31], [5]. Rapid progress can be seen
on the development of various convolutional architectures
as the main spatial feature extractor used on both facial
detection [32] and landmark localisation models [2], [34]
and achieving state of the art accuracy. In spite of this,
localization is still mainly performed on every single frame,
without taking into the temporal information.

On the other hand, introduction of recurrent neural net-
works (RNN), especially Long Short Term Memory (LSTM)
[9], has allowed incorporating temporal information with
great success in several applications [6]. This is the case
of the recently introduced general object tracker Re3 [4],
which is robust against image occlusions and can be trained
on long sequences thanks to its internal LSTM networks.
Nonetheless, RNN have received little attention in the context
of facial tracking. The only exception so far has been the
work by Jiang et al. [7], who proved that an end-to-end
RNN is capable to work on multiple domains including facial
landmark tracking. However, even though they obtained very
low failure rates, their accuracy was still inferior to other
state of the art facial trackers.

III. FULLY-END-TO END RECURRENT FACIAL TRACKER

Our tracking model is a composite network that receives
raw frames as input and returns the localization of facial
landmarks as the final output. It is composed by four sub-
networks, arranged in a way that permits the end-to-end
training of the whole network, without involving any hand-
crafted features. Specifically, if Xt and Xt−1 denote the
current and previous frame, respectively, our Composite
Recurrent Convolution Tracker (CRCT ) will estimate the
position of n facial landmarks in the current frame lt:

lt = {(x̂1, ŷ1)...(x̂n, ŷn)} = CRCTΦ(Xt, Xt−1,bt−1) (1)

where Φ are the parameters {Φ1,Φ2, Φ3} of our composite
networks CRCT and {x̂1...x̂n, ŷ1...ŷn} ∈ R>0.

Our CRCT consists of four individual sub-networks:
Multi-Task Cascaded Neural Network faces detector
(MTCNN ), facial bounding Box Tracker (BT ), Facial
Validator (FV ) and Facial Landmark Localizer (FLL). Note
that for face detection we relied on the state of the art
MTCNN [32].

A schematic diagram of our tracker can be seen in Figure
1. We start by assuming a tracking scenario, where we have
an existing estimate for the bounding box of the preceding
frame.1 This bounding box, together with the current and
previous frames {Xt,Xt−1} are fed to our BT network to
produce a first estimate of the targeted landmarks (lBTt ) and
bounding box (bBTt ), while at the same time updates its
internal state.

Once we have our first landmarks estimate lBTt , we use the
FV network to validate the result obtained by the tracker. To
do so, we train the FV network to estimate the probability
that the objects tracked within lBTt is a face (p(f)). In case
of obtaining a low probability, which would suggest that the
BT network has lost track, we use the MTCNN to perform
face detection on the current frame and re-initialize the whole
network for the next time step.

In contrast, if lBTt is successfully validated by the FV
network, the current frame and its bounding box bBTt are
fed to the FLL network, which produces the final estimates
for the target landmarks, lFt and the corresponding bounding
box, bFt . Note that, while FLL and BT have similar
convolutional layers, FLL works from an already detected
and validated bounding box, which allows it to achieve a
more accurate result.

A. The Recurrent Facial Bounding Box Tracker

We base our BT network on the structure of the Re3

tracker [4], which is a full end-to-end object tracker with
LSTM networks to capture the temporal dependencies
from video. Given input frames {Xt,Xt−1} cropped as
{XPb

t ,XPb
t−1} with the previous Bounding Box (Pb = bt−1),

the BT network estimates the landmark positions for the
current frame lBTt and updates the internal state of the LSTM
ht as follows:

ht, l
BT
t = BTΦ1(Xt,Xt−1, Pb, ht−1)

= BTΦ1(XPb
t ,XPb

t−1, ht−1)

= LSTMΦ1(ELΦ1(XPb
t ,XPb

t−1), ht−1)�WBT
Φ1

(2)

where LSTM refers to the set of internal LSTM [9] net-
works, EL stands for the Embedding Layer, WBT ,WEL is
the set of weight of each fully connected layers of BT and
EL respectively and res is the Inception-Residual Network
[18] (Inception-Resnet). The Embedding Layer is a weighted
concatenation of the residual network coefficients:

EL = [resΦ1(XPb
t ); resΦ1(XPb

t−1)]�WEL
Φ1 (3)

1For initialization, this estimate can be obtained from the MTCNN
detector or from an external input.
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Fig. 1. General overview of our tracker

We use Φ1 to denote the parameters of all sub-networks
contained in BT . Finally, we also generate an estimate of
the bounding box for the current frame bBTt directly from
the estimated landmarks:

bBTt = {(x̂min, ŷmin), (x̂max, ŷmax)|x̂, ŷ ∈ lBTt } (4)

Note that, even though the architecture of BT is based
on Re3, we introduce several key modifications to adapt this
recurrent tracker model into this new problem domain:

1) First we preconditioned the convolutional network of
our BT to contain common facial features by replacing
the internal Skip Convolution Networks (SkipNet) with
the more sophisticated Inception-Resnet that has been
pre-trained on the MS-Celeb [8] and CasiaWebFace
[29] datasets2 with triplet loss [14]. Figure 2 visualizes
the differences between the original SkipNet on Re3

versus the more complex structure of BT , which
is inherited from the Inception-Resnet (Version 1).
Each block of Inception-Resnet architecture can be
expressed as below:

ri+1 = H(ri) + F (ri,Wi) (5)

Where ri and ri+1 are the input and output of the i-th
block, H(bi) is the identity matrix and F represents
the combined effect of the various convolutional and
ReLU layers. Notice that SkipNet does not have the
advantage of residual connection as in the Inception-
Resnet which eases the gradient flows in optimization
[18].

2) Second we use the BT network to produce a first esti-
mate of landmark locations (Lbt) following the work of

2The trained inception resnet is publicly available on:
https://github.com/davidsandberg/facenet

Fig. 2. Convolution architectures of Skip Network vs Inception-Residual
Network block

[7], but we split the fully-connected layer that receives
the output from the LSTMs into five independent fully-
connected networks so that each of them is focused on
a specifically facial region. Specifically, we divide the
facial landmarks in the following regions: facial sil-
houette (our outer contour), eyebrows, eyes, nose and
lips. Thus WBT = {WR1,WR2,WR3,WR4,WR5}.

3) Finally, we reduce by half the number of neurons from
the original Re3, which implies an input image size to
128x128. This enables us to train the network faster
while still achieving state of the art accuracy.

B. The Facial Validator

After the initial estimates produced by the BT network
we use the FV network to validate the results before further
processing. The main reason for doing so is to avoid the drift
problem, well known in the tracking literature [22]. Specif-
ically, the FV network can be understood as a conditional
function that determines whether to continue the processing
pipeline based on the current estimates from BT or to reset
the tracker and attempt to re-detect the facial region because
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the current estimates are not reliable enough.
We follow the methodology in [3] to build a strong

classifier to estimate the probability p(f) that the object
currently being tracked by BT is a face. To this end, we
use concatenated small patch regions from the estimated
landmarks (lBTt ) as follows:

p(f |Xt, l
BT
t ) = FVΦ2(Xt, l

BT
t )

=
1

1 + e−(WFV
Φ2 �cnnΦ2 (Xt,lBTt ))

(6)

Where cnn is the composite function of standard stacked
convolution layers followed by a bottleneck layer with WFV

parameterized by Φ2 and 0 < p(f) < 1. We use the value
of Tc as the threshold level.

C. The Facial Landmark Localiser

The FLL is built by reusing the same pretrained
Inception-Resnet as in BT , with the assumption that the
internally extracted facial feature should also be useful to
estimate the locations of the facial landmarks. This landmark
localization procedure can be expressed mathematically as
below:

lt = FLLΦ3(XPb
t ) = WFLL

Φ3 � resΦ3(XPb
t ) (7)

With FLL consisting of Inception-Resnet (res) and a regres-
sion layer of weight matrix WFLL parameterized by Φ3.

D. Recurrent Facial Tracking Algorithm

The operation of our Composite Recurrent Convolution
Tracker, CRCT , is shown in Algorithm 1. When a suit-
able detection of the facial region is available, e.g. from
initialization or the previous frame (lines 8 and 10), the BT
network produces a first estimate of facial landmarks (line
13) and bounding box (line 14). Then, the FV network is
used to estimate the probability p(f) that the output from
BT corresponds to a face. If p(f) is sufficiently high (above
threshold Tc), the initial estimate is refined by the FLL
network to produce the final tracker estimate (lines 18 and
19). Otherwise, it is assumed that the BT has lost track and
there is a need to re-initialize the tracker (line 16).

We perform reinitialization between lines 3 and 6. We
start by detecting the face in the current frame by means of
the MTCNN network. This detector is likely to produce
multiple detections, hence its outputs are validated with
respect to the bounding box of the previous frame bt−1.
Specifically, we compare the Euclidean distance between
each new detection and the center of the previous bounding
vox d(bt−1, b

MT ) with respect to the magnitude of the
previous bounding box, and keep the one that produces the
minimum ratio:

Pb =


b, min

∀b∈bMT
d(bt−1,b)
‖bt−1‖ < TB

b0, dim(bt−1) < 0

bt−1, otherwise

(8)

as long as there is at least one detection whose ratio is
below threshold TB . Otherwise, all new detections are too

far from the previous tracking result and no re-initialization
is performed. The latter is necessary to tackle the cases in
which the face being tracked moves out of the visual field.
In such cases, without threshold TB the system might be
incorrectly re-initialized to track another face. In contrast, by
using TB the tracker remains in its latest valid coordinates
awaiting for the tracked object to come back to the field of
view.

Finally, (SeqBT ) controls the length of the temporal
window that is considered by the tracker (in frame units),
which is fixed at training time (see next section). If the
tracker is re-initialized or if the sequence length (SeqT )
exceeds the temporal window (SeqBT ), then the internal
state of the the BT network is reset (line 8).

Algorithm 1 Recurrent Facial Tracking Algorithms
Input : Frame of X0..N

Initial value of b0 and h0

Threshold value of TB , TC , and SeqBT
Network parameters of Φ1,Φ2 and Φ3

Output : Facial Landmark of l1..N

1: redetect← FALSE, SeqT ← 0, bt ← b0
2: for t← 1 to N do
3: if redetect then
4: bMT ←MTCNN(Xt)
5: if length(d(bt−1, b

MT ) > TB) > 0 then
6: Pb ← bMT [min(d(bt−1, b

MT ))]
7: else
8: Pb ← bt
9: if dim(Pb) < 0 then

10: Pb ← b0
11: if redetect OR SeqT > SeqBT) then
12: ht ← h0 and SeqT ← 0
13: ht,lBTt ← BTΦ1 (Xt,Xt−1,PBB)
14: bt

BT ← [max(lBTt ),min(lBTt )]
15: if FVΦ2 (Xt,lBTt ) < TC then
16: redetect ← TRUE
17: else
18: lt ← FLLΦ3 (Xt,b

BT
t )

19: bt ← [max(lt),min(lt)]
20: SeqT ← SeqT + 1
21: redetect ← FALSE

E. Training procedure

We train BT ,FLL and FV with `1,`2 and Cross Entropy
Loss respectively. Specifically for BT , we follow the same
curriculum learning as in Re3 [4] using sequence lengths
between SeqBT = 2 to SeqBT = 32 frames. We used mul-
tiple transfer learning to condition the pre-trained Inception-
Resnet. To do so, we fine-tuned this network on the FLL
network before its integration into BT .

We trained our BT network using 300-VW training
dataset for 2D Landmark tracking and LS3D-W annotation
[2] for 3D-2DA landmark tracking. The FV and FLL
networks were trained with the 300W [16] and Menpo

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 21,2020 at 15:22:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. OPE scores on rigid facial bounding box tracking experiment

datasets [30] for both 2D and 3DA-2D landmark localization.
We performed data augmentations by means of horizontal
flipping, −45◦ to 45◦ degree rotations and artificial strip
boxes across the frames to simulate occlusions.

We trained our model using ADAM optimizer [10] with
scheduled weight learning decay every 10.000 iterations.
Two NVIDIA tesla GPUs were used for training which took
approximately two to three days to train a single BT for a
defined sequence length, and around two days for both FLL
and FV . Our pre-trained models and results are publicly
available for additional reference 3.

IV. EXPERIMENTS

A. Experiment Settings

We conducted two main facial tracking experiments: rigid
facial bounding box tracking and deformable 2D and 3DA-
2D facial landmark tracking. We performed the experiments
on the 300-VW dataset [17] comprising 55 videos divided
into three categories according to the difficulty level. We
used the original 2D facial landmarks directly as ground-
truth for deformable 2D facial landmark tracking and their
corresponding bounding box for rigid facial bounding box
tracking.

We used the projected 3DA-2D dataset video dataset [30]
for deformable 3DA-2D facial landmark tracking, which
consists of a subset of the videos from 300-VW dataset. To
facilitate comparison to other works in all cases we report
the projected result and follow the conventional 68 facial
landmark locations. We set the thresholds TB = 1.0 and
TC = 0.5 for all experiments.

B. Rigid - Facial bounding boxes tracking

In this experiment, we compare our bounding box tracker
(BT ) with three state of the art general object trackers:

1) MDNET[13] (abbreviated MD) which performs a se-
ries of convolutions and has a specialized regression
layer on the single individual frames without taking
any temporal information between frames

2) Siamese Net (abbreviated SM) [1] which uses both the
previous and the current frame to be fed to its Siamese

3https://github.com/deckyal/RT/tree/master

Network based tracker. This can be seen as capturing
a short temporal context of 2 frames.

3) Recurrent Tracker Re3 (abbreviated RE), as provided
in [4], which is pre-trained on sequences of 32 frames.

In this test, all trackers are initialized with the same
initial bounding box (the ground truth). Our system is tested
without the FLL block, which means that bt = bBTt , and
we report results for different sequence lengths between
SeqBT = 2 and SeqBT = 32 frames (BT 2, BT 4, BT 8,
BT 16 and BT 32), to see the impact of longer temporal
context in our BT .

TABLE I
AUC RESULT OF ALL CATEGORIES OF RIGID FACIAL TRACKING ON

300-VW DATASET

Method
Temporal sequences

0 2 4 8 16 32

RE [4] - - - - - 0.363
SM [1] - 0.445 - - - -
MD [13] 0.616 - - - - -
BT - 0.783 0.784 0.754 0.761 0.705

Figure 3 shows the performance of each model, computed
with One Pass Evaluation (OPE)[25] in terms of the success
rate against the bounding box overlap ratios. We observe that
our models, BT , achieve the best results in all three cate-
gories, outperforming all other trackers including the original
Re3. The main reason for these results is that, as opposed
to our model, none of the compared trackers is specifically
designed to track faces. Furthermore, with the exception of
MDNET, other models lack any drift prevention mechanism,
which explains the performance drop on category 3, where
the extreme facial poses and illumination changes occur. As
illustrated in Figure 5, our model demonstrated the ability to
consistently track the facial bounding box on extreme pose
and illumination conditions.

Note that we show the results for our BT tracker under
different training sequence lengths (2, 4, 8, 16 and 32). The
highest scores were achieved for SeqBT = 2 and 4 frames in
all categories, with very small differences between these two
settings as shown in Table I. Bigger SeqBT values generally
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Fig. 4. AUC graphs on 2D and 3DA-2D facial landmark tracking experiments.

Fig. 5. Some visual results of rigid facial tracking on 300-VW dataset.

resulted in lower scores. This suggests that a rather short
temporal context is sufficient to optimize facial tracking.
Nevertheless, these results must be read in relation to the
test sequences, which show quite irregular (not necessarily
natural) facial movements. This is especially noticeable in
category 3, where rapid face movement with pose changes
occur in relatively short sequences. In such cases, BT 2
and BT 4, trained to capture the temporal information from
shorter sequences have an advantage since they are restarted
more frequently.

C. 2D and 3DA-2D facial landmark tracking

In this section we show the results of 2D and 3DA-2D
facial landmark tracking. In the 2D setting, we compared
our model with other 8 facial trackers: 1) two hybrid
trackers, MEEM CFSS and MD CFSS, which showed the
best performance in the recent facial tracking review from
Chrysos et al. [3]; 2) the current state of the art tracker, from
Yang et al. [28]; 3) the recent tracker from Gu et al. [7] based
on Bayesian RNNs; 4) four other trackers from the original
300VW competition [17].

In 3DA-2D facial landmark tracking, we follow a similar
procedure to [3] to build four hybrid trackers combining
both MDNET and MTCNN with state of the art 3D facial
localizers for comparison: 1) Facial Alignment Network
[2] resulting in FA MD 3D and FA MT 3D; 2) 3DFFA[34]
to create other two hybrid trackers: 3DFFA MD 3D and
3DFFA MT 3D.

Similarly to the previous section, we evaluate our full
tracker, CRCT , under different operation conditions. First,
analogously to the previous section, we build trackers with
different lengths of training sequences, SeqBT = 2, 4,
8, 16 and 32. Then, we also report results for our model
in tracking-by-detection mode (FLL MT), where we use
MTCNN for face detection in each frame and FLL
for landmark localisation. This experiment is to assess the
impact of the BT network on the performance of the full
tracker.

Our results are summarized in Tables II and III, while the
curves for some of the trackers are also displayed in Fig. 4.
In all cases, we use the Normalized Mean Error (NME) by
Facial Bounding Box [30], and report the Area Under the

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 21,2020 at 15:22:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Some visual results of landmark tracking on challenging case from 300-VW testset.

TABLE II
RESULTS ON THE LANDMARK 2D TRACKING DATASET

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

CRCT 2 0.784 0.50 0.790 0.05 0.729 1.75
CRCT 4 0.778 1.01 0.790 0.07 0.725 1.80
CRCT 8 0.772 1.88 0.788 0.07 0.725 1.91
CRCT 16 0.773 1.64 0.787 0.07 0.725 2.02
CRCT 32 0.769 1.79 0.778 0.07 0.723 1.86
FLL MT 0.729 5.38 0.769 2.60 0.691 3.39
MD CFSS [3] 0.784 1.80 0.783 0.34 0.713 7.47
ME CFSS [3] 0.758 3.56 0.772 0.38 0.659 11.3
Yang [28] 0.791 2.40 0.788 0.32 0.710 4.46
Jinwei [7] 0.718 1.20 0.703 0.20 0.617 4.83
Uricar [21] 0.657 7.62 0.677 4.13 0.574 7.96
Xiao [26] 0.760 5.90 0.782 3.84 0.695 7.38
Raja [15] 0.735 6.56 0.717 3.91 0.659 8.29
Wu [23] 0.674 13.9 0.732 5.60 0.602 13.1

Curve (AUC) and Failure Rate (FR) for NME scores up to
0.08 [3].

In Table II we see that our CRCT trackers trained with
SeqBT = 2 and 4 frames achieves the highest AUC for
Categories 2 and 3, while they rank within the top-3 trackers
in the Category 1 dataset, slightly below [28]. Additionally,
our models have far lower Failure Rates than all other
compared trackers, Which for some applications is even more
important than having smaller landmark localisarion errors
[7]. We also see similar results in Table III for the 3DA-
2D scenario, Where in overall terms our model outperforms
other trackers across all categories with higher AUC and low
Failure Rates.

TABLE III
RESULTS ON THE LANDMARK 3DA-2D TRACKING DATASET

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

CRCT 2 3D 0.760 0.09 0.772 0.20 0.605 9.97
CRCT 4 3D 0.760 0.14 0.772 0.19 0.603 10.0
CRCT 8 3D 0.758 0.34 0.773 0.20 0.603 10.2
CRCT 16 3D 0.750 1.36 0.771 0.22 0.604 10.3
CRCT 32 3D 0.747 1.72 0.770 0.21 0.596 10.6
FLL MT 3D 0.730 4.14 0.757 0.45 0.603 11.5
FA MD 3D [2][32] 0.732 1.35 0.757 0.90 0.544 14.2
FA MT 3D [2][13] 0.706 2.41 0.722 0.57 0.566 10.3
3DFFA MD 3D [34][32] 0.721 4.30 0.702 1.85 0.504 19.8
3DFFA MT 3D [34][13] 0.595 4.12 0.590 4.07 0.497 12.4

Another observation is that our simpler tracking-by-
detection model (FLL MT ) reaches fairly high AUC and
low Failure Rates, with a performance comparable to other
trackers. This demonstrates the maturity of tracking by
detection models, as also reported in [3]. Nevertheless, these
results are still inferior to those from our full CRCT
models, which incorporates BT to benefit from the temporal
dependency between frames. This proves that the BT net-
work provides a more consistent facial bounding box which
impacts the final landmark estimation from FLL. This effect
has also been demonstrated in the recent work from Lv et
al. [12].

D. Visual Results Analysis

We provide several examples of 2D and 3DA-2D tracking
in Figure 6, where we see that our tracker is able to
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accurately localize the facial landmarks in especially difficult
cases. These include extreme head poses up to full profile,
blurring (e.g. due to sudden movements of the face or the
camera, see 2nd row of examples), partial occlusions (1st
and 3rd rows) and strong illumination changes (4th row).
Specifically, for 2D landmark tracking, our model performs
well in cases in which the state of the art tracker from Yang et
al. [28] often gives inaccurate landmark positions. Similarly,
for 3DA-2D tracking, comparison of our results to those
from FA MD 3D, highlights the robustness of our tracker
to handle the difficulties mentioned above from this dataset.

V. CONCLUSIONS
In this paper we present the first composite deformable

facial tracker that, while being fully end-to-end, is able to
achieve state-of-the-art results for in the wild benchmarks.
Unlike other trackers, our model benefits from the temporal
information captured by our internal recurrent tracker. Fur-
ther, our model can be tuned to consider shorter or longer
temporal contexts and analyze their impact on facial tracking
performance.

Facial tracking experiments on the challenging 300-VW
dataset show that our model can produce state of the art ac-
curacy and far lower failure rates than competing approaches.
We specifically compared the performance of our approach
modified to work in tracking-by-detection mode and showed
that, as such, it can produce results that are comparable
to state of the art trackers. However, upon activation of
our tracking mechanism, the results improve significantly,
confirming the advantage of taking into account temporal
dependencies.

Our results suggest that the optimal temporal context to
consider for this dataset is between 2 and 4 frames (∼ 70
to 160 ms). Nevertheless, these results must be read in
relation to the test sequences, which show quite irregular
(not necessarily natural) facial movements.
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