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Abstract: The fetal face contains essential information in the evaluation of congenital malformations and the fetal brain
function, as its development is driven by genetic factors at early stages of embryogenesis. Three-dimensional
ultrasound (3DUS) can provide information about the facial morphology of the fetus, but its use for prenatal
diagnosis is challenging due to imaging noise, fetal movements, limited field-of-view, low soft-tissue contrast,
and occlusions. In this paper, we propose a fetal face reconstruction algorithm from 3DUS images based on
a novel statistical morphable model of newborn faces, the BabyFM. We test the feasibility of using newborn
statistics to accurately reconstruct fetal faces by fitting the regularized morphable model to the noisy 3DUS
images. The algorithm is capable of reconstructing the whole facial morphology of babies from one or several
ultrasound scans to handle adverse conditions (e.g. missing parts, noisy data), and it has the potential to aid
in-utero diagnosis for conditions that involve facial dysmorphology.

1 INTRODUCTION

Craniofacial malformations that occur because of ab-
normal development comprise over one third of all
congenital (i.e., birth) defects (Mossey and Catilla,
2001). These anomalies comprise a wide range of
heterogeneous conditions and often have a multifac-
torial origin, including genetic and environmental fac-
tors (S, orop Florea et al., 2018). These malforma-
tions can impact swallowing, breathing, hearing, vi-
sion, speech, and cognitive development (on Gov-
ernment Affairs, 2020; EvansAnne et al., 2018), and
they impose a large psychosocial, healthcare, and eco-
nomic burden.
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Early diagnosis is often crucial for the effective
treatment of functional and developmental aspects
(Learned-Miller et al., 2006; Tu et al., 2018; Tu et al.,
2019). However, not all syndromes are easily identi-
fied, some of them having subtle physical manifesta-
tions; careful clinical assessment may be necessary to
distinguish an isolated abnormality from an atypical
or mildly manifested syndrome. Moreover, the iden-
tification of the specific syndrome is important for the
overall care of the patient (EvansAnne et al., 2018). In
this sense, the analysis of facial morphology can pro-
vide relevant information and serve as a pre-screening
tool, facilitating the early detection of developmen-
tal disorders (Menezes et al., 2016; Merz and Welter,
2005). Efforts are being made to shift from diagno-
sis at birth, or during the first years of life, to prenatal
diagnosis, which facilitates parents’ counselling and
careful planning of delivery and postnatal treatment
(Pooh and Kurjak, 2011). However, prenatal diag-
nosis of fetal syndromes is not easy, mainly because
of the wide range of morphological features involved
and the challenging nature of medical images.



Ultrasound is the primary imaging modality for
fetal assessment. It is a noisy image modality, but
it has the advantage of being widely available, cost-
effective, non-ionizing, and it allows real-time exam-
ination. Three-dimensional ultrasound (3DUS) facil-
itates the evaluation of anatomical structures from the
facial surface and can therefore aid diagnosis (An-
dresen et al., 2012; Werner et al., 2016; Merz and
Abramowicz, 2012). A detailed 3D model of the fetus
face could thus play a crucial role in prenatal diagno-
sis.

Little research has been done in 3D face recon-
struction from fetal images, mainly due to the limita-
tions of prenatal imaging itself. In (Dall’Asta et al.,
2017), it was presented a statistical shape model con-
structed from 20 3DUS scans that were manually seg-
mented and aligned, and statistically significant dif-
ferences in face shape were found between normal
and abnormal fetuses. There are some works on gen-
erating physical fetal models (although not always
face specific) from 3DUS, magnetic resonance imag-
ing, and computer tomography (Werner et al., 2010;
Werner et al., 2015; Menezes et al., 2016; Speranza
et al., 2017). However, they involve slice-by-slice
manual segmentation and post-processing with pro-
prietary software.

In this paper, we explore the feasibility of recon-
structing the facial morphology before birth by ana-
lyzing 3DUS images of the fetus from routine scan-
ning with the help of a recently proposed statisti-
cal model constructed from 3D scans of babies and
newborns: the Baby Face Model (BabyFM) (Morales
et al., 2020). Differently from previous works, we do
not build our model directly from the noisy fetal im-
ages, but employ statistics from newborns to constrain
the geometric reconstruction of the fetal face. In this
way, we circumvent the difficulties associated with
building accurate models from the noisy 3DUS im-
ages. Tests on a small set of fetal scans show promis-
ing results in both qualitative and quantitative terms,
even in adverse conditions (e.g. missing parts, noisy
data).

2 MATERIALS

2.1 3D Baby Face Morphable Model

A 3D morphable model (3DMM) is a tool for repre-
senting 3D shapes and textures. In the context of face
analysis, the idea is to learn a general 3D face model
that is able to encode the statistics of facial shape. A
crucial aspect to consider when using a 3DMM is that
the statistics encoded in the model must match those

of the target population, e.g., in terms of ethnicity,
gender and, especially important for this work, age.
The latter has been an important obstacle for the ap-
plication of pre-existing 3DMMs to fetal data, since
all available 3DMMs were built from adults and, al-
though sometimes they also included children, none
of them included babies. However, very recently,
Morales et al. (Morales et al., 2020) have published
the Baby Face Model (BabyFM), which constitutes
the first 3DMM built exclusively from babies, includ-
ing an important proportion of data from newborns.

The BabyFM was built from 45 3D scans of baby
faces (mean age 8:42�6:45 months). Several ethnici-
ties were included: Caucasian (47%), African Ameri-
can (24%), Hispanic (20%), and Asian (9%). Also,
the data were roughly gender-balanced: 56% male
and 44% female. The BabyFM covers the facial re-
gion that is delimeted by the chin the forehead and
the ears, all included. Additionally, the vertice indices
for 23 anatomical landamrks (Figure 1) are provided,
which are used to initialise the 3D facial reconstruc-
tion (see Section 3.1.1).

Figure 1: Anatomical landmarks. Illustration of the 23
anatomical landmarks considered in this project on the
mean baby morphable model face. Landmark abbrevia-
tions: enL/R = endocanthion Left/Right; n = nasion; exL/R
= exocanthion Left/Right; aL/R = alare Left/Right; acL/R
= alar crest Left/Right; prn = pronasale; sn = subnasale;
chL/R = cheilion Left/Right; cphL/R = crista philtrum
Left/Right; ls = labiale superius; li = labiale inferius; sl =
sublabiale; pg = pogonion; tL/R = tragion Left/Right; and
oiL/R = otobasion inferius Left/Right.

2.2 Test Database

To evaluate our methods, 10 3DUS scans from 4 fe-
tuses were collected, i.e., there were multiple 3DUS
images for each of fetus, corresponding to different
viewing directions. These fetuses had no relation to
any of the babies used for the construction of the



BabyFM. The 3DUS scans were obtained at Hospi-
tal Clı́nic and Hospital Sant Joan de Déu, Barcelona,
according to its Ethical Research Committee and the
current legislation. Images were acquired using a
General Electric Voluson E6 (General Electric, IL,
USA) US machine with a low-frequency probe (4-8
MHz).

Three-dimensional meshes were extracted using
just a threshold segmentation. The meshes contained
not only the face but also other parts of the fetus’
body, placenta, and noise. Using the Landmark soft-
ware 3.6 1, we positioned a subset from the 23 tar-
geted landmarks in the BabyFM (see Figure 1) on
each fetal scan, according to their visibility. The iden-
tification of these anatomical landmarks in the fetal
scan is challenging because of the occlusions (e.g.,
the baby may be positioned with the hand on the face)
and the noisy nature of the data, and therefore not all
of them could be positioned for each fetus.

Additionally to the 3DUS scans, for each of the
babies we had three 2D postnatal photographs taken
from different viewpoints by the parents with their
mobile phones. These images were used to obtain a
2D-3D reconstruction of the baby face to which we
could quantitatively compare with the reconstruction
obtained from the US scans (see Section 3.2). This
simple setup was aimed to avoid having to scan new-
born babies with special equipment.

3 METHODS

Our data processing pipeline consists of two main
stages (Figure 2): 3DUS fitting and multiple image
fitting.

3.1 3D Ultrasound Fitting

First, the 3D reconstruction of the fetal face is ob-
tained from the 3DUS images by fitting the BabyFM
to it, i.e., finding the shape parameters in the 3DMM
that best reproduce the face observed in the US. At
this stage, the BabyFM works as a statistical regular-
izer allowing a better robustness to noise and other
artifacts.

3.1.1 Landmark-based Fitting

A first estimation of the 3D fetal face is obtained
considering only the landmarks positioned in the US
mesh. For this, an iterative procedure consisting of (1)
landmark alignment and (2) shape parameter calcula-
tion is performed. In the landmark alignment stage,

1https://landmark2.software.informer.com/download/

Procrustes analysis is used to find a similarity trans-
formation to fit the mean face shape of the BabyFM to
the US landmarks. Then, the shape parameters a that
best define the fetal face in the US scan are estimated
by first solving the normal equation:

a = (FT
r Fr)

�1
F

T
r (x� x̄) ; (1)

where Fr is the reduced shape basis matrix (i.e., the
rows of the eigenvector matrix that correspond to the
landmarks), and then regularizing to ensure obtain-
ing plausible faces. The shape parameters are as-
sumed to follow a multivariate Gaussian distribution.
Therefore, we constrain the shape parameter vectors
to lie within a hyper-ellipsoid in the parameter space,
the size of which is determined by the variances (the
eigenvalues) of the data.

The two-stage landmark-based fitting is iterated
20 times to ensure convergence. Finally, the mean
approximation error (Ē) between the landmarks of the
fitted morphable face model and those of the US mesh
is calculated as follows:

Ē =
1
m

m

å
j=1
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where l j 2 R3 is the j-th landmark, T is the transfor-
mation that maps the BabyFM mean to the US, and
m is the number of anatomical landmarks that were
positioned in the US mesh.

3.1.2 Iterative Closest Point with Statistical
Constraints

The fetal face reconstruction obtained from the
landmark-based fitting is refined using an iterative
closest point (ICP) algorithm. In every iteration, the
ICP algorithm fits the face reconstruction to the 3DUS
mesh and then recovers the model’s shape parameter
a, analogously to the landmark-based fitting (i.e., by
Eq. 1 followed by regularization) but now using the
whole surface, i.e., all rows of the shape basis F in-
stead of just Fr. To increase the robustness to input
artifacts, the point-matching was applied under geo-
metric and uniqueness constraints (to minimize the
impact of outliers and ensure one-to-one mapping).
The ICP with statistical constraints was repeated by
alternating between the correspondence mapping and
the model’s parameter update followed by statistical
regularization, until the error difference between con-
secutive iterations was below a predefined threshold.
In this work, this convergence threshold was set to
10�2 mm.

3.2 Multiple Image Fitting

In order to quantitatively validate the fetal shapes esti-
mated from the 3DUS scans, we reconstruct the new-
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Figure 2: Proposed pipeline: 3DUS fitting to obtain the fetal face and multiple image fitting to obtain the baby face after birth.

born 3D face from a set of three 2D images (frontal,
left, and right pose) taken shortly after birth. The
BabyFM is used here to estimate the facial 3D ge-
ometry of the newborn. Once the 3D geometry is ob-
tained, facial texture can also be added to obtain a
photo-realistic 3D reconstruction.

We address the 3D-from-2D reconstruction prob-
lem using sparse geometric features (edges and land-
marks). Our approach is based on the algorithm pro-
posed in (Bas et al., 2016), but using multiple images
rather than only a single image. We start by position-
ing the anatomical landmarks in the different images
using a 2D landmarker and obtaining the edges by ap-
plying the Canny edge detector.

Then, an initialization of the 3D face is obtained
using only the landmarks. The landmark fitting is then
refined in an iterative closest point manner by finding
the closest image edge to each model contour vertex.
The model edge vertices can then be considered as
landmarks with known 2D position, for which opti-
mal pose and shape estimates can be easily computed
under the assumption of a scaled orthographic projec-
tion. In particular, we obtain the optimal pose and
shape parameter by minimizing an objective function
that include landmark, edge, and prior terms:

E(a;R; t;s) = w1Elmk(a;R; t;s)+
+ w2EEdge(a;R; t;s)+ w3EPrior(a); (3)

where a is the shape parameters vector and R; t, and s
the pose parameters (rotation, translation, and scale)

assuming a scaled orthographic projection. The pa-
rameters w1, w2 and w3 correspond to the weights
given to each error term, the sum of the three weights
should be equal to one. The used values to perform
the reconstructions were 0.25, 0.25, 0.50 respectively.
The landmark term penalizes differences between the
actual landmarks positions on the images and the ones
obtained by projecting the 3D model landmarks. The
edge term compares the edges detected on the image
with those induced by the model due to occluding
boundaries. The prior term acts as a regularizer of
the shape parameters based on the statistics encoded
in the BabyFM.

4 RESULTS

4.1 US Fitting

We applied our reconstruction pipeline to each of the
fetuses scans. Figure 3 shows the US images ob-
tained from the Voluson system (GE Healthcare), the
US meshes obtained after the threshold segmentation,
and the 3D reconstruction that we obtained. As can
be observed in Figure 3, the input data is quite chal-
lenging. For example, in most of the 3DUS images,
the ears are not present or are extremely noisy. Never-
theless, our method is able to estimate an approximate
ear shape by exploiting the geometric correlations en-




